TY - JOUR A1 - Balski, Matthias A1 - Emmerling, Franziska A1 - Kipphardt, Heinrich A1 - Panne, Ulrich T1 - Determination of boron in silicon without use of additional complexing agents N2 - Methods for the determination of boron in various matrices described in the literature usually employ complexing agents like mannitol to retain the volatile boron species during matrix evaporation steps. However, also relatively high boron recoveries from silicon containing samples have been reported when no complexing agents were added to the digestion acids. The mechanism behind this matrix-dependant recovery has been investigated by studying the boron recovery in the analysis of solar grade silicon. It was found that the NH4+ ion formed by the reduction of nitric acid during sample digestion is responsible for the higher recovery of boron, which leads to a possible analysis method without the use of complexing agents if the sample preparation procedure is carefully optimized. KW - Boron KW - Complexing agents KW - Matrix evaporation KW - Sample enrichment PY - 2014 U6 - https://doi.org/10.1039/c4ay00410h SN - 1759-9660 SN - 1759-9679 VL - 6 IS - 12 SP - 4003 EP - 4008 PB - RSC Publ. CY - Cambridge AN - OPUS4-30956 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Balski, Matthias A1 - Kipphardt, Heinrich A1 - Berger, Achim A1 - Meyer, S. A1 - Panne, Ulrich T1 - Determination of impurities in solar grade silicon by inductively coupled plasma sector field mass spectrometry (ICP-SFMS) subsequent to matrix evaporation N2 - A method for the determination of 22 trace impurities in solar grade silicon after dissolution in a mixture of HF and HNO3 and subsequent matrix evaporation is reported. The presented method involves a simple, inexpensive, one-vessel sample preparation apparatus design. The recoveries of B, Na, Mg, Al, P, K, Ca, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Mo, Sb, W, and Tl at 250 µg kg-1 level are in the range of 93 to 108%. After careful selection of monitored isotopes and their respective resolutions, a sector field mass spectrometer has been used to carry out the measurements. Limits of determination down to 120 ng kg-1 have been obtained using a calibration by three-point standard addition. The method was tested on diluted NIST SRM 57b silicon powder as well as on synthetic test samples and also applied successfully on raw solar grade silicon samples in an interlaboratory comparison including NAA. KW - Solar grade silicon KW - Matrix separation KW - Sector field mass spectrometry PY - 2014 U6 - https://doi.org/10.1039/C3AY41213J SN - 1759-9660 SN - 1759-9679 VL - 6 IS - 1 SP - 77 EP - 85 PB - RSC Publ. CY - Cambridge AN - OPUS4-29893 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - D'Agostino, G. A1 - Bergamaschi, L. A1 - Giordani, L. A1 - Oddone, M. A1 - Kipphardt, Heinrich A1 - Richter, Silke T1 - Use of instrumental neutron activation analysis to investigate the distribution of trace elements among subsamples of solid materials N2 - The results of analytical measurements performed with solid-sampling techniques are affected by the distribution of the analytes within the matrix. The effect becomes significant in case of determination of trace elements in small subsamples. In this framework we propose a measurement model based on Instrumental Neutron Activation Analysis to determine the relative variability of the amount of an analyte among subsamples of a material. The measurement uncertainty is evaluated and includes the counting statistics, the full-energy gamma peak efficiency and the spatial gradient of the neutron flux at the irradiation position. The data we obtained in a neutron activation experiment and showing the relative variability of As, Au, Ir, Sb and W among subsamples of a highly pure Rh foil are also presented. KW - Instrumental neutron activation analysis KW - Homogeneity KW - Rhodium KW - Uncertainty PY - 2014 SN - 0026-1394 SN - 1681-7575 VL - 51 SP - 1 EP - 6 PB - Inst. of Physics Publ. CY - Bristol AN - OPUS4-30302 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kipphardt, Heinrich A1 - Ried, Peter A1 - Kramer, Claus A1 - Langhammer, Nicole A1 - Richter, Silke T1 - Primary Standards for Challenging Elements - WP 1.3 "Non-metallic impurities" T2 - EMRP stakeholder meeting CY - Teddington, England DA - 2014-02-03 PY - 2014 AN - OPUS4-30375 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Plotnikov, Alexei A1 - Pfeifer, Jens A1 - Richter, Silke A1 - Kipphardt, Heinrich A1 - Hoffmann, V. T1 - Determination of major nonmetallic impurities in magnesium by glow discharge mass spectrometry with a fast flow source using sintered and pressed powder samples N2 - Fast flow glow discharge mass spectrometry with a Grimm-type ion source providing a high sputter rate was used for the determination of major nonmetallic impurities in magnesium. The analytical signal was found to be strongly influenced by the electrical discharge parameters. For calibration by standard addition, synthetic standard samples were produced in two different ways—namely, by pressing and by sintering doped metal powders. The observed sensitivity of the calibration curves was shown to depend on the particle size of the powder. For the magnesium powders, the mass fractions of oxygen, nitrogen, boron, and silicon were determined to be about 0.01 kg·kg-1 (relative standard deviation approximately 10–20 %), 2,700 mg·kg-1, 150 mg·kg-1, and 300 mg·kg-1, respectively. KW - Glow discharge mass spectrometry KW - Magnesium matrix KW - Nonmetallic impurities KW - Fast flow source KW - Electrical parameters KW - Calibration samples KW - Non-metals KW - Standard samples KW - Powders PY - 2014 U6 - https://doi.org/10.1007/s00216-014-8185-x SN - 1618-2642 SN - 1618-2650 VL - 406 IS - 29 SP - 7463 EP - 7471 PB - Springer CY - Berlin AN - OPUS4-31975 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen A1 - Kipphardt, Heinrich A1 - del Rocío Arvizu Torres, M. A1 - Manzano, J.V.L. A1 - Rodrigues, J.M. A1 - de Sena, R.C. A1 - Yim, Y.-H. A1 - Heo, S.W. A1 - Zhou, T. A1 - Turk, G.C. A1 - Winchester, M. A1 - Yu, L. L. A1 - Miura, T. A1 - Methven, B. A1 - Sturgeon, R. A1 - Jährling, R. A1 - Rienitz, O. A1 - Tunc, M. A1 - Can, S.Z. T1 - Final report of the key comparison CCQM-K72: Purity of zinc with respect to six defined metallic analytes N2 - KEY COMPARISON High purity elements can serve as a realization of the SI unit amount of substance for the specific element. Solutions prepared from high purity metals by applying gravimetric preparation and the concept of molar mass are used as 'calibration' solutions in many fields of analytical chemistry and provide the metrological basis in elemental analysis. Since ideal purity does not exist for real materials, the actual purity of the high purity material must be known with a specified uncertainty. As required uncertainties around 10-4 relative on the purity statement are not accessible in almost all cases by a direct measurement of the element in itself, the indirect approach is followed, where all elements excepting the matrix element itself are measured and their sum is subtracted from the value for ideal purity, which is 1 kg/kg. It was the aim of this comparison to demonstrate the capability of national metrology institutes and designated institutes to determine the purity of pure elements. In order to limit the effort within this comparison, only six metallic impurities (Ag, Al, Cd, Cr, Ni, Tl) in the low mg/kg range are considered in a zinc matrix. It has to be underlined here that the task was to measure the purity of zinc based on the determination of six analytes. The task is not trace analysis of specific analytes in zinc. This subtle distinction defines different measurands. The sample, pure Zn, was cut in pieces of cubic geometry for wet chemical analysis or of pin geometry for GDMS analysis and was sent to the participants. The comparison was run under the auspices of the Inorganic analysis Working Group (IAWG) of the CCQM and was piloted by the BAM Federal Institute for Materials Research and Testing, Berlin, Germany. The majority of the participants applied ICP-MS techniques and only two participants used additionally atomic absorption spectrometry. GDMS was used only by one participant. The observed spreads for the measurement results reported by the participants were significantly lower than those of the preceding study CCQM-P107 and were well below the target uncertainty of 30% relative. As a consequence, comparability within the participating laboratories is demonstrated to be established. The individual measurement results, mean values and medians derived were in all cases very consistent with the reference values obtained by IDMS and so the accuracy of the measurement results for the participating laboratories is as well demonstrated to be established. Especially with the results of CCQM-P62 and CCQM-P107 in mind, the outcome of CCQM-K72 can be considered as a big step forward in the community. CCQM is aware of the difference between a characterization based on only six analytes and a complete characterization. Therefore, the pilot study CCQM-P149 has been initiated and already started, which focuses on the fit-for-purpose approaches for the purity determination of metals (here: zinc) to be used as primary standards in elemental analysis. Another follow-up in the form of a pilot study on non-metal impurities is mandatory, because non-metal impurities such as oxygen, nitrogen and sulfur often make up the largest contributions. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA). KW - CCQM KW - Metrology KW - Purity PY - 2014 U6 - https://doi.org/10.1088/0026-1394/51/1A/08008 SN - 0026-1394 SN - 1681-7575 VL - 51 IS - 1A (Tech.Suppl. 2014) SP - 08008, 1 EP - 40 PB - Inst. of Physics Publ. CY - Bristol AN - OPUS4-30772 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -