TY - JOUR A1 - Kind, Thomas A1 - Wöstmann, Jens T1 - Kombinierte Radar- und Ultraschalluntersuchungen zum schadfreien Kernbohren im Zuge einer Verstärkung N2 - Im Rahmen von Ertüchtigungsmaßnahmen an Spannbetonbrücken werden häufig Kernbohrungen durchgeführt, die die vorhandenen Spannbewehrungen nicht beschädigen dürfen. Die Zerstörungsfreie Prüfung (ZfP) kann einen wesentlichen Beitrag leisten, das Risiko einer Beschädigung zu minimieren und somit eine bessere Planungssicherheit für die Ertüchtigungsmaßnahmen zu schaffen. Typische ZfP-Verfahren für das Auffinden von vorgespannter Bewehrung sind das Radar- und das Ultraschallverfahren. Am Beispiel der Ertüchtigung einer Brücke in Bremen wird die Vorgehensweise beschrieben, und es werden die Grenzen der Verfahren aufgezeigt. KW - Zerstörungsfreie Prüfung KW - Radar KW - Ultraschall KW - Spanngliedortung KW - Ertüchtigung KW - Bauwerkserhaltung/Sanierung KW - Bewehrung KW - Brückenbau PY - 2012 U6 - https://doi.org/10.1002/best.201200003 SN - 0005-9900 SN - 1437-1006 VL - 107 IS - 4 SP - 255 EP - 261 PB - Ernst CY - Berlin AN - OPUS4-25755 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lai Wai-Lok, Wallace A1 - Kind, Thomas A1 - Wiggenhauser, Herbert T1 - Using ground penetrating radar and time-frequency analysis to characterize construction materials N2 - For decades, applications of nondestructive evaluation-civil engineering (NDE-CE) focus on object identifications (such as steel bars, tendon ducts and backwall reflections) in infrastructures. Because of the advantage of efficient visualization of internal structure, utilization of these methods can probably be extended to material characterization (MC) of aging and adversely exposed infrastructures. However, two factors yield a big gap between NDE and MC. First, for the ease of visualization, the primary focus of NDE-signal processing is object identification, which usually alters the originality of the signal. Second, there is lack of relationship and inverse models bridging the NDE-derived and conventional material properties compared to other disciplines of science, such as geophysics. These disadvantages make laboratory and field-scale NDE-MC still a far-reaching holy grail and is possibly the greatest hurdle to be regularly adopted in CE structures. This paper attempts to address this gap from object identification to MC using ground penetrating radar (GPR) as one of the most frequently used NDE-CE methods, and signal processing with joint time–frequency domain (JTFA) analysis. Three examples of material property characterization regarding the individual effects of steel bar corrosion in concrete, hydration and moisture content distribution of construction materials are given. KW - Ground penetrating radar KW - Time-frequency analysis KW - Construction materials KW - Short time fourier transform PY - 2011 U6 - https://doi.org/10.1016/j.ndteint.2010.10.002 SN - 0963-8695 VL - 44 IS - 1 SP - 111 EP - 120 PB - Butterworth-Heinemann CY - Oxford AN - OPUS4-26288 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lai Wai-Lok, Wallace A1 - Kind, Thomas A1 - Wiggenhauser, Herbert T1 - Frequency-dependent dispersion of high-frequency ground penetrating radar wave in concrete N2 - This paper studies the dielectric dispersion of high frequency radar wave in concrete in early-aged and hardened concrete specimens. Frequency-dependent spectra of phase velocity ν(ω) were measured to deduce the spectra of real part of dielectric permittivity ε'(ω). The dispersion was measured by three high nominal ground penetrating radar frequencies (1.5, 1.6 and 2.6 GHz), experimenting on two steel bars with concrete cover 50 and 100 mm. It was found that ν(ω) and ε'(ω) dispersed at lower frequency, but became stable at high frequency regions, which agrees with the classical GPR plateau. The same frequency components at different nominal antenna frequencies show a close range of ν(ω) and ε'(ω) in concrete of different ages. The results in this paper warrant further investigation of using GPR wave to study material properties. KW - Frequency-dependent dielectric dispersion KW - Ground penetrating radar (GPR) KW - Phase velocity KW - Real part of dielectric permittivity KW - Concrete PY - 2011 U6 - https://doi.org/10.1016/j.ndteint.2010.12.004 SN - 0963-8695 VL - 44 IS - 3 SP - 267 EP - 273 PB - Butterworth-Heinemann CY - Oxford AN - OPUS4-26289 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Válek, J. A1 - Kruschwitz, Sabine A1 - Wöstmann, Jens A1 - Kind, Thomas A1 - Valach, J. A1 - Köpp, Christian A1 - Lesák, J. T1 - Nondestructive investigation of wet building material: multimethodical approach N2 - Building stones are porous media and they can deteriorate through moisture ingress and secondary damage such as crystallization of soluble salts. Not only is this due to the increasing number of flood events in the past years but also structural damages of houses from activity such as leakage or rising moisture (groundwater) are the main causes. The potential benefit of several nondestructive testing methods to assess water damage in building stone has been studied in a field-scale experiment. Three testing walls made of fired clay brick, sandstone, and spongilite were flooded and their drying behavior monitored using infrared thermography, complex resistivity, ground penetrating radar, and ultrasonics. The results were compared to the average moisture content determined by gravimetric weighing of the specimens. Qualitatively, the results of the different nondestructive testing methods matched well. But in terms of quantitative data, some scatter was observed and the results should be viewed with care. Collecting time-consuming calibration data would help to overcome this problem, but especially when dealing with historic building structures, this is not always possible in practice. KW - Diagnostics KW - Moisture KW - Masonry KW - Nondestructive tests KW - Electrical PY - 2010 U6 - https://doi.org/10.1061/(ASCE)CF.1943-5509.0000056 SN - 0887-3828 VL - 24 IS - 5 SP - 462 EP - 472 PB - Soc. CY - Reston, Va. AN - OPUS4-22355 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kind, Thomas A1 - Feistkorn, Sascha A1 - Trela, Christiane A1 - Wöstmann, Jens T1 - Impulsradar für schadensfreie Kernbohrungen an Spannbetonbrücken N2 - Der Bedarf an Kernbohrungen in Stahlbetonbauwerken ist in den letzten Jahren durch die steigende Anzahl von Instandsetzungen und Ertüchtigungen unterschiedlicher Stahlbetonbauten stark gewachsen. Für die Durchführung einer Kernbohrung ist die Kenntnis der genauen Lage der vorgespannten Bewehrung notwendig, um diese für die Statik wichtigen Elemente nicht zu beschädigen. Das methodische Vorgehen für die schadensfreie Durchführung von Kernbohrungen wird am Beispiel einer ca. 1 m dicken Hohlkastenseitenwand der Karl-Carstens Brücke in Bremen gezeigt. Nach der Darstellung der Ausgangslage und der Aufgabenstellung werden die Schritte beschrieben, die zu einer erfolgreichen Durchführung der Aufgaben erforderlich waren. Hierbei steht die planmäßige Anwendung der zerstörungsfreien Untersuchungsmethode Impulsradar im Vordergrund. Das Vorgehen gliedert sich in vier Schritte: - Zunächst wurde eine Voruntersuchung durchgeführt, um festzustellen, ob sich die vorgespannte Bewehrung in den erwarteten Tiefen von bis zu 50 cm und unter den vorhandenen Bedingungen der Hohlkastenseitenwände mit dem Impulsradar detektieren lässt. - Nach der erfolgreichen Voruntersuchung wurden im zweiten Schritt die Bereiche der geplanten Kernbohrungen großflächig mit dem Impulsradar untersucht. - Anschließend konnte anhand der Messdaten die Lage der Bewehrung ermittelt und in einen Plan eingezeichnet werden, der im Maßstab 1:1 ausgedruckt wurde. Dieser Plan wurde positionsrichtig auf die Oberfläche der Hohlkastenwand geklebt. - Im letzten Schritt wurden dann gezielte Test- und Suchbohrungen durchgeführt, denen die eigentlichen Kernbohrungen folgten. Mit der im Plan dargestellte Bewehrungslage war die Voraussetzung für schadensfreies Bohren gegeben. So konnten die Kernbohrungen durchgeführt werden, ohne die vorgespannte Bewehrung zu beschädigen. KW - Zerstörungsfreie Prüfung KW - Impulsradar KW - Stahlbetonbrücke KW - Ertüchtigung KW - Kernbohrung KW - Schubnadeln KW - Spannglieder PY - 2009 U6 - https://doi.org/10.1002/best.200900060 SN - 0005-9900 SN - 1437-1006 VL - 104 IS - 12 SP - 876 EP - 881 PB - Ernst CY - Berlin AN - OPUS4-20657 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lai Wai-Lok, Wallace A1 - Kind, Thomas A1 - Stoppel, Markus A1 - Wiggenhauser, Herbert T1 - Measurement of accelerated steel corrosion in concrete using ground-penetrating radar and a modified half-cell potential method N2 - A new approach is presented to evaluate corrosion of steel bars in concrete by 1.5- and 2.6-GHz ground-penetrating radar (GPR) and a modified half-cell potential method. Changes in time-lapsed travel times, amplitudes, and peak frequencies that are associated with short-time Fourier transform spectrograms of the bar reflections were continuously measured. The year-long corrosion process of the reinforcement bar rapidly accelerated within a few days by impressing direct current across a pair of embedded reinforcement bars, which served as the anode and cathode. When corrosion started, the travel times, amplitudes, and frequency spectra of the bar reflection changed. The results were analyzed by dividing the material's response into three phases (NaCl contamination, depassivation, and corrosion). The writers attribute the phenomena of the first two phases to the ionic conduction and interfacial polarization effect, described in the low-frequency regime of complex dielectric permittivity outlined in the Maxwell-Wagner effect. The remaining phase corresponds with the appearance of large and multiple interfaces among steel, concrete, corrosion product, and cracks, in addition to the upward movement of the corrosion product to the concrete surface that intercepts wider radar footprints. The findings, based on time lapse measurements, provide a basis to further apply the GPR technique to spatial measurements in laboratory and field studies. KW - Accelerated steel corrosion in concrete KW - Ground-penetrating radar KW - Short-time Fourier transform KW - Half-cell potential PY - 2013 U6 - https://doi.org/10.1061/(ASCE)IS.1943-555X.0000083 SN - 1076-0342 SN - 1943-555X IS - June SP - 205 EP - 220 CY - New York, NY AN - OPUS4-28851 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wai-Lok Lai, W. A1 - Kind, Thomas A1 - Fung-Chu Sham, J. A1 - Wiggenhauser, Herbert T1 - Correction of GPR wave velocity at different oblique angles between traverses and alignment of line objects in a common offset antenna setting N2 - Estimation of ground penetrating radar's wave velocity in materials is a critical step to accurately estimate depth of embedded line objects in concrete structures, and wetness of material. Errors of velocity are defined as the deviations between the velocities obtained in various oblique angles and those obtained in the traverse normal to the object orientation in a common offset antenna setting. In this paper, we quantified and corrected the errors of such estimation. GPR traverses were designed to travel in various oblique angles θ (90°, 75°, 60° and 45°) relative to the steel bars at 5 cover depths (55 mm, 85 mm, 115 mm, 145 mm and 175 mm). GPR wave velocity at any position within the lateral detection range of steel bars was measured with simple trigonometry in a semi-automated in-house program. It was found that reduction of oblique angles (i.e. θ<90°) causes flatter hyperbolic reflections and the associated errors of velocity can be as much as 30% in the case of an oblique angle 45° before correction. Such errors were corrected after re-scaling the horizontal travel distance with a multiplication factor of sin θ. KW - Ground penetrating radar KW - Oblique angles KW - Hyperbola KW - Velocity error PY - 2016 UR - http://www.sciencedirect.com/science/article/pii/S096386951630007X U6 - https://doi.org/10.1016/j.ndteint.2016.03.003 VL - 82 SP - 36 EP - 43 PB - Elsevier Ltd. AN - OPUS4-37146 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lai Wai-Lok, Wallace A1 - Kind, Thomas A1 - Kruschwitz, Sabine A1 - Wöstmann, Jens A1 - Wiggenhauser, Herbert T1 - Spectral absorption of spatial and temporal ground penetrating radar signals by water in construction materials N2 - This paper studies the spatial and temporal spectral absorption of reflector signals of a 1.5 GHz ground penetrating radar (GPR) during a drying process of a brickwall from initial wet to later dry state. The non-stationary GPR signals were processed with short time-Fourier transform (STFT) and wavelet transform (WT) in a novel spatial-time–frequency (STF) domain. Spatial distribution of peak frequency at the direct wave (DW) across the antenna and a backwall reflection was studied to characterize the mechanism of spectral absorption of GPR wave. Results from WT were shown to be more preferred to those from STFT because the WT offers multiple resolutions to cope with both low and high frequency components in GPR wavelets but STFT does not. In addition to the traditional GPR signal interpretation in time-domain and our previous works on time–frequency domain, the analysis method operated in the STF domain provides another possibility of material characterization by GPR in large and field scale. KW - Ground penetrating radar (GPR) KW - Short time-Fourier transform (STFT) KW - Wavelet transform (WT) KW - Spatial and temporal spectral absorption KW - Construction materials KW - Dual-polarization PY - 2014 U6 - https://doi.org/10.1016/j.ndteint.2014.06.009 SN - 0963-8695 VL - 67 SP - 55 EP - 63 PB - Butterworth-Heinemann CY - Oxford AN - OPUS4-31838 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lai Wai-Lok, Wallace A1 - Kind, Thomas A1 - Wiggenhauser, Herbert T1 - A study of concrete hydration and dielectric relaxation mechanism using ground penetrating radar and short-time fourier transform N2 - Ground penetrating radar (GPR) was used to characterize the frequency-dependent dielectric relaxation phenomena in ordinary Portland cement (OPC) hydration in concrete changing from fresh to hardened state. The study was experimented by measuring the changes of GPR A-scan waveforms over a period of 90 days, and processed the waveforms with short-time Fourier transform (STFT) in joint time-frequency analysis (JTFA) domain rather than a conventional time or frequency domain alone. The signals of the direct wave traveled at the concrete surface and the reflected wave from an embedded steel bar were transformed with STFT, in which the changes of peak frequency over ages were tracked. The peak frequencies were found to increase with ages and the patterns were found to match closely with primarily the well-known OPC hydration process and secondarily, the evaporation effect. The close match is contributed to the simultaneous effects converting free to bound water over time, on both conventional OPC hydration and dielectric relaxation mechanisms. KW - Soil water content KW - Wet soil KW - Microwave KW - Moisture KW - GPR KW - Dispersion PY - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-239723 SN - 1687-6172 IS - Article ID 317216 SP - 1 EP - 14 PB - Hindawi Publ. CY - New York, NY, USA AN - OPUS4-23972 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Taffe, Alexander A1 - Kind, Thomas A1 - Stoppel, Markus A1 - Kurz, J.H. T1 - Bauwerkscanner zur automatisierten und kombinierten Anwendung zerstörungsfreier Prüfverfahren im Bauwesen N2 - Bereits seit vielen Jahren stehen Anwendern der zerstörungsfreien Prüfung im Bauwesen (ZfPBau) zuverlässige Geräte zur Untersuchung von Betonbauteilen zur Verfügung. Viele dieser Geräte zeichnen eine Messgröße in Bezug zum Messort auf und sind je nach Ausstattung in der Lage, die Ergebnisse in einem Koordinatensystem darzustellen. Doch erst die Kombination verschiedener ZfPBau-Verfahren an einer Messfläche erlaubt den maximalen Informationsgewinn über die innere Konstruktion von Stahlbeton- und Spannbetonbauteilen. In dem Beitrag wird ein Bauwerkscanner zur automatisierten und kombinierten Datenaufnahme beschrieben, der erstmals die Kombination von Radar, Ultraschall und Wirbelstrom mit Datenausgabe in einem einheitlichen Koordinatensystem ermöglicht. Dieser Scanner ist im Gegensatz zu früheren Systemen technikerbasiert und erlaubt im Bedarfsfall eine spätere detaillierte Auswertung durch ZfP-Spezialisten. Die Ergebnisse werden bildgebend in frei wählbaren Schnitten dargestellt, was bereits kurze Zeit nach der Messung auf der Baustelle möglich ist. Am Beispiel eines Brückenträgers wird gezeigt, wie der tatsächliche Spanngliedverlauf aus Messdaten ermittelt wird und dem angenommenen Verlauf gemäß Bestandsplan gegenübergestellt wird. Damit kann künftig eine Überprüfung von Bestandsplänen durchgeführt werden. Darüber hinaus könnten nicht vorhandene Bestandspläne rekonstruiert werden. Des Weiteren wird am gleichen Brückenträger gezeigt, wie sich ein echter Verpressfehler und im Unterschied dazu ein Luftspalt in einem Hüllrohr in Messdaten abbilden. An dem Beispiel wird deutlich, wie Ultraschallergebnisse in Kombination mit Phasenauswertung zur Formulierung von Verdachtsstellen für Verpressfehler eingesetzt werden können und welche Maßnahmen zur Verifizierung getroffen werden müssen. KW - Zerstörungsfreie Prüfung im Bauwesen KW - Bauen im Bestand KW - Brückenprüfung KW - Spanndrahtbruch KW - Remanenzmagnetismus KW - Automatisierung PY - 2011 U6 - https://doi.org/10.1002/best.201100004 SN - 0005-9900 SN - 1437-1006 VL - 106 IS - 4 SP - 267 EP - 276 PB - Ernst CY - Berlin AN - OPUS4-23757 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -