TY - JOUR A1 - Michalik-Onichimowska, Aleksandra A1 - Kern, Simon A1 - Riedel, Jens A1 - Panne, Ulrich A1 - King, R. A1 - Maiwald, Michael T1 - ‘‘Click” analytics for ‘‘click” chemistry – A simple method for calibration–free evaluation of online NMR spectra N2 - Driven mostly by the search for chemical syntheses under biocompatible conditions, so called "click" chemistry rapidly became a growing field of research. The resulting simple one-pot reactions are so far only scarcely accompanied by an adequate optimization via comparably straightforward and robust analysis techniques possessing short set-up times. Here, we report on a fast and reliable calibration-free online NMR monitoring approach for technical mixtures. It combines a versatile fluidic system, continuous-flow measurement of 1H spectra with a time interval of 20 s per spectrum, and a robust, fully automated algorithm to interpret the obtained data. As a proof-of-concept, the thiol-ene coupling between N-boc cysteine methyl ester and allyl alcohol was conducted in a variety of non-deuterated solvents while its time-resolved behaviour was characterized with step tracer experiments. Overlapping signals in online spectra during thiol-ene coupling could be deconvoluted with a spectral model using indirect hard modeling and were subsequently converted to either molar ratios (using a calibrationfree approach) or absolute concentrations (using 1-point calibration). For various solvents the kinetic constant k for pseudo-first order reaction was estimated to be 3.9 h-1 at 25 °C. The obtained results were compared with direct integration of non-overlapping signals and showed good agreement with the implemented mass balance. KW - Online NMR Spectroscopy KW - Reaction Monitoring KW - Automated Data Evaluation KW - Thiol-ene click chemistry KW - Click Chemistry KW - Process Analytical Technology PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-393232 UR - http://www.sciencedirect.com/science/article/pii/S1090780717300575 VL - 277 SP - 154 EP - 161 PB - Elsevier Inc. CY - Oxford AN - OPUS4-39323 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -