TY - CONF A1 - Kern, Simon A1 - Gräßer, Patrick A1 - Zientek, Nicolai A1 - Maiwald, Michael T1 - First steps towards field integration of benchtop NMR spectroscopy for online monitoring and process control N2 - Online monitoring and process control requires fast and noninvasive analytical methods, which are able to monitor the concentration of reactants in multicomponent mixtures with parts-per-million resolution. Online NMR spectros-copy can meet these demands when flow probes are directly coupled to reactors, since this method features a high linearity between absolute signal area and sample concentration, which makes it an absolute analytical com-parison method being independent on the matrix. Due to improved magnet design and field shimming strategies portable and robust instruments have been introduced to the market by several manufacturers during the last few years. First studies with this technology showed promising results to monitor chemical reaction in the laboratory. T2 - 11. Kolloquium Arbeitskreis Prozessanalytik CY - Wien, Austria DA - 30.11.2015 KW - Online NMR Spectroscopy KW - Smart Sensors KW - Prozess-Spektroskopie KW - Process Analytical Technology KW - Process control PY - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-388411 SP - 43 EP - 44 AN - OPUS4-38841 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meyer, Klas A1 - Kern, Simon A1 - Zientek, Nicolai A1 - Guthausen, G. A1 - Maiwald, Michael T1 - Process control with compact NMR N2 - Compact nuclear magnetic resonance (NMR) instruments make NMR spectroscopy and relaxometry accessible in industrial and harsh environments for reaction and process control. An increasing number of applications are reported. To build an interdisciplinary bridge between “process control” and “compact NMR”,we give a short overviewon current developments in the field of process Engineering such as modern process design, integrated processes, intensified processes along with requirements to process control, model based control, or soft sensing. Finally, robust field integration of NMR systems into processes environments, facing explosion protection or Integration into process control systems, are briefly discussed. KW - Prozessanalytik KW - Quantitative NMR-Spektroskopie KW - Industrie 4.0 KW - Reaction monitoring KW - Process control KW - Online NMR spectroscopy KW - Compact NMR PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-373562 UR - http://www.sciencedirect.com/science/article/pii/S0165993616300073 SN - 0165-9936 VL - 83 IS - Part A / SI SP - 39 EP - 52 PB - Elsevier AN - OPUS4-37356 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kern, Simon A1 - Meyer, Klas A1 - Wander, Lukas A1 - Guhl, Svetlana A1 - Paul, Andrea A1 - Maiwald, Michael T1 - Online low-field NMR spectroscopy in modular plants for chemical production N2 - Die Online-Reaktionsverfolgung ist der Schlüssel zur chemischen Prozesskontrolle. Heute werden in diesem Bereich hauptsächlich Methoden der optischen Spektroskopie eingesetzt. Durch aktuelle Entwicklungen im Bereich kompakter Niederfeld-NMR-Spektrometer auf Basis von Permanentmagnetsystemen ist erstmals auch die Integration unmittelbar in einer industriellen Produktionsumgebung möglich. Diese Geräte sind robuste und relativ preiswerte Analysatoren, welche die Vorteile eines wartungsfreundlichen Betriebs ohne Notwendigkeit von kryogenen Flüssigkeiten, sowie eine einfache Handhabung vereinen. Aktuell auf dem Markt verfügbare Geräte sind jedoch ausschließlich auf den Einsatz im Laborbetrieb ausgerichtet. Für die Kopplung als Online-Methode im Prozesseinsatz ist die Entwicklung geeigneter Durchflusszellen notwendig. Diese ermöglichen idealerweise ein gutes Signal-Rausch-Verhältnis, eine ausreichende Robustheit und müssen die Anforderungen an die Integration in industrielle Anlagen erfüllen (z.B. Explosionsschutz, Temperierung). Intensivierte kontinuierliche Prozesse stehen im Fokus der aktuellen Forschung. Im Vergleich zu etablierten Batch-Verfahren besteht in modularen chemischen Anlagen die Möglichkeit durch kurze Umrüstzeiten zwischen Kampagnen effektiv auf die Marktentwicklung zu reagieren. Bei kontinuierlicher Prozessführung sind Online-Sensoren und eine zuverlässige und schnelle Regelung der Produktqualität essentiell. Andernfalls besteht ein großes Risiko, große Mengen nicht-spezifikationskonformer Produkte zu erhalten. Dies wird im Rahmen des Forschungsprojekts CONSENS (Integrated Control and Sensing) der Europäischen Union durch die Entwicklung und Integration intelligenter Sensormodule zur Prozessüberwachung und -steuerung in modularen Anlagenkonzepten thematisiert. Das vorgestellte NMR-Analysatormodul mit der Baugröße von 57 x 57 x 85 cm basiert auf einem kompakten 43,5-MHz-NMR-Spektrometer. Dieses ist zusammen mit einem Akquisitionsrechner und einer programmierbaren Steuerung für die automatisierte Daten-aufbereitung (Phasing, Baseline-Korrektur) und Auswertung in ein explosionsgeschütztes Gehäuse integriert. Für die automatisierte Datenanalyse kommt die Methode des Indirect Hard Modelings (IHM) zum Einsatz. Die entwickelten IHM-Modelle werden mittels Online-Hochfeld-NMR-Spektroskopie als Referenzverfahren in einem Versuchsaufbau zur Überwachung kontinuierlicher Reaktionen auf Basis eines mit Spritzenpumpen betriebenen 1/8" Rohrreaktors validiert. N2 - Monitoring chemical reactions is the key to chemical process control. Today, mainly optical online methods are applied. NMR spectroscopy has a high potential for direct loop process control. Compact NMR instruments based on permanent magnets are robust and relatively inexpensive analysers, which feature advantages like low cost, low maintenance, ease of use, and cryogen-free operation. Instruments for online NMR measurements equipped with a flow-through cell, possessing a good signal-to-noise-ratio, sufficient robustness, and meeting the requirements for integration into industrial plants (i.e., explosion safety and fully automated data analysis) are currently not available off the rack. Intensified continuous processes are in focus of current research. Flexible (modular) chemical plants can produce different products using the same equipment with short down-times between campaigns and quick introduction of new products to the market. In continuous flow processes online sensor data and tight closed-loop control of the product quality are mandatory. If these are not available, there is a huge risk of producing large amounts of out-of-spec (OOS) products. This is addressed in the European Union’s Research Project CONSENS (Integrated Control and Sensing [3]) by development and integration of smart sensor modules for process monitoring and control within such modular plant setups. The presented NMR module is provided in an explosion proof housing of 57 x 57 x 85 cm module size and involves a compact 43.5 MHz NMR spectrometer together with an acquisition unit and a programmable logic controller for automated data preparation (phasing, baseline correction) and evaluation. Indirect Hard Modeling (IHM) was selected for data analysis of the low-field NMR spectra. A set-up for monitoring continuous reactions in a thermostated 1/8” tubular reactor using automated syringe pumps was used to validate the IHM models by using high-field NMR spectroscopy as analytical reference method. T2 - Praktische Probleme der Kernresonanzspektroskopie CY - Erlangen, Germany DA - 16.01.2017 KW - Online NMR spectroscopy KW - Automated data evaluation KW - NMR sensor KW - Process control PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-389819 AN - OPUS4-38981 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Guhl, Svetlana A1 - Meyer, Klas A1 - Kern, Simon A1 - Gräßer, Patrick A1 - Maiwald, Michael T1 - Process monitoring of an intensified continuous production unit with compact NMR spectroscopy N2 - Monitoring chemical reactions is the key to chemical process control. Today, mainly optical online methods are applied. NMR spectroscopy has a high potential for direct loop process control. Compact NMR instruments based on permanent magnets are robust and inexpensive analysers, which feature advantages like low maintenance, ease of use, and cryogen-free operation. Instruments for online NMR measurements equipped with a flow-through cell, possessing a good signal-to-noise-ratio, robustness, and meeting the requirements for integration into industrial plants (i.e., explosion safety and fully automated data analysis) are currently not available off the rack. Intensified continuous processes are in focus of current research. Flexible (modular) chemical plants can produce different products using the same equipment with short down-times between campaigns and quick introduction of new products to the market. In continuous flow processes online sensor data and tight closed-loop control of the product quality are mandatory. Otherwise there is a huge risk of producing large amounts of out-of-spec (OOS) products. This is addressed in the European Union’s Research Project CONSENS by development and integration of smart sensor modules for process monitoring and control within such modular plant setups. The presented NMR module is provided in an explosion proof housing with a module size of 57 x 57 x 85 cm and involves a compact 43.5 MHz NMR spectrometer together with an acquisition unit and a programmable logic controller for automated data preparation (phasing, baseline correction) and evaluation. Indirect Hard Modeling (IHM) was selected for data analysis of the low-field NMR spectra. A set-up for monitoring continuous reactions in a thermostated 1/8” tubular reactor using automated syringe pumps was used to validate the IHM models by using high-field NMR spectroscopy as analytical reference method. T2 - Workshop for Process Industry - Tackling the Future of Plant Operation CY - Frankfurt am Main, Germany DA - 25.01.2017 KW - Online NMR spectroscopy KW - Process analytical technology KW - Prozessanalytik KW - Process control KW - CONSENS PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-391386 AN - OPUS4-39138 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Guhl, Svetlana A1 - Kern, Simon A1 - Meyer, Klas A1 - Gräßer, Patrick A1 - Wander, Lukas A1 - Maiwald, Michael T1 - Online NMR Spectroscopy for Process Monitoring in Intensified Continuous Production Plants N2 - Process analytical techniques are extremely useful tools for chemical production and manufacture and are of particular interest to the pharmaceutical, food and (petro-) chemical industries. Today, mainly optical online methods are applied. NMR spectroscopy has a high potential for direct loop process control. Compact NMR instruments based on permanent magnets are robust and relatively inexpensive analysers, which feature advantages like low cost, low maintenance, ease of use, and cryogen-free operation. Instruments for online NMR measurements equipped with a flow-through cell, possessing a good signal-to-noise-ratio, sufficient robustness, and meeting the requirements for integration into industrial plants (i.e., explosion safety and fully automated data analysis) are currently not available off the rack. A major advantage of NMR spectroscopy is that the method features a high linearity between absolute signal area and sample concentration, which makes it an absolute analytical comparison method which is independent of the matrix. This is an important prerequisite for robust data evaluation strategies within a control concept and reduces the need for extensive maintenance of the evaluation model over the time of operation. Additionally, NMR spectroscopy provides orthogonal, but complimentary physical information to conventional, e.g., optical spectroscopy. It increases the accessible information for technical processes, where aromatic-toaliphatic conversions or isomerizations occur and conventional methods fail due to only minor changes in functional groups. As a technically relevant example, the catalytic hydrogenation of 2-butyne-1,4-diol and further pharmaceutical reactions were studied using an online NMR sensor based on a commercially available low-field NMR spectrometer within the framework of the EU project CONSENS (Integrated Control and Sensing). T2 - 4th European Conference on Process Analytics and Control Technology (EuroPACT 2017) CY - Potsdam, Germany DA - 10.05.2017 KW - Process Monitoring KW - CONSENS KW - Online NMR Spectroscopy KW - Process Analytical Technology KW - Process control KW - Hydration KW - EuroPACT PY - 2017 SP - 103 EP - 103 CY - Frankfurt a. M. AN - OPUS4-40231 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kern, Simon A1 - Michalik-Onichimowska, Aleksandra A1 - Riedel, Jens A1 - Panne, Ulrich A1 - King, R. A1 - Maiwald, Michael T1 - “Click” analytics for “click” chemistry – a simple method for calibration-free evaluation of online NMR spectra N2 - Currently research in chemical manufacturing moves towards flexible plug-and-play approaches focusing on modular plants, capable of producing small scales ondemand with short down-times between individual campaigns. This approach allows for efficient use of hardware, a faster optimization of the process conditions, and thus, an accelerated introduction of new products to the market. Driven mostly by the search for chemical syntheses under biocompatible conditions, so-called “click” chemistry rapidly became a growing field of research. The resulting simple one-pot reactions are so far only scarcely accompanied by an adequate optimization via comparably straightforward and robust analysis techniques. Here we report on a fast and reliable calibration-free online high field NMR monitoring approach for technical mixtures. It combines a versatile fluidic system, continuous-flow measurement with a time interval of 20 s per spectrum, and a robust, automated algorithm to interpret the obtained data. All spectra were acquired using a 500 MHz NMR spectrometer (Varian) with a dual band flow probe having a 1/16 inch polymer tubing working as a flow cell. Single scan 1H spectra were recorded with an acquisition time of 5 s, relaxation delay of 15 s. As a proof-of-concept, the thiol-ene coupling between N-boc cysteine methyl ester and allyl alcohol was conducted in non-deuterated solvents while its time-resolved behaviour was characterised with step tracer experiments Through the application of spectral modeling the signal area for each reactant can be deconvoluted in the online spectra and thus converted to the respective concentrations or molar ratios. The signals which were suitable for direct integration were used herein for comparison purposes of both methods. T2 - 4th European Conference on Process Analytics and Control Technology (EuroPACT 2017) CY - Potsdam, Germany DA - 10.05.2017 KW - Online NMR Spectroscopy KW - Process Analytical Technology KW - Click Chemistry KW - Reaction Monitoring KW - Process control KW - Indirect Hard Modeling KW - Spectral Modeling PY - 2017 SP - 156 EP - 157 CY - Frankfurt a. M. AN - OPUS4-40232 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kern, Simon A1 - Meyer, Klas A1 - Wander, Lukas A1 - Guhl, Svetlana A1 - Paul, Andrea A1 - Maiwald, Michael T1 - Process monitoring of intensified continuous production units with compact NMR spectroscopy N2 - Monitoring chemical reactions is the key to chemical process control. Today, mainly optical online methods are applied. NMR spectroscopy has a high potential for direct loop process control. Compact NMR instruments based on permanent magnets are robust and inexpensive analysers, which feature advantages like low maintenance, ease of use, and cryogen-free operation. Instruments for online NMR measurements equipped with a flow-through cell, possessing a good signal-to-noise-ratio, robustness, and meeting the requirements for integration into industrial plants (i.e., explosion safety and fully automated data analysis) are currently not available off the rack. Intensified continuous processes are in focus of current research. Flexible (modular) chemical plants can produce different products using the same equipment with short down-times between campaigns and quick introduction of new products to the market. In continuous flow processes online sensor data and tight closed-loop control of the product quality are mandatory. Otherwise there is a huge risk of producing large amounts of out-of-spec (OOS) products. This is addressed in the European Union’s Research Project CONSENS (www.consens-spire.eu) by development and integration of smart sensor modules for process monitoring and control within such modular plant setups. The presented NMR module is provided in an explosion proof housing with a module size of 57 x 57 x 85 cm and involves a compact 43.5 MHz NMR spectrometer together with an acquisition unit and a programmable logic controller for automated data preparation (phasing, baseline correction) and evaluation. Indirect Hard Modeling (IHM) was selected for data analysis of the low-field NMR spectra. A set-up for monitoring continuous reactions in a thermostated 1/8” tubular reactor using automated syringe pumps was used to validate the IHM models by using high-field NMR spectroscopy as analytical reference method. T2 - Seminar, Institute of Technical Biocatalysis, Hamburg University of Technology CY - Hamburg, Germany DA - 13.01.2017 KW - Process monitoring KW - Online NMR spectroscopy KW - Indirect hard modeling KW - Process control KW - Process analytical technology KW - CONSENS PY - 2017 AN - OPUS4-43551 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kern, Simon A1 - Guhl, Svetlana A1 - Meyer, Klas A1 - Wander, Lukas A1 - Paul, Andrea A1 - Maiwald, Michael T1 - Mathematical and statistical tools for online NMR spectroscopy in chemical processes N2 - Monitoring chemical reactions is the key to chemical process control. Today, mainly optical online methods are applied, which require excessive calibration effort. NMR spectroscopy has a high potential for direct loop process control while exhibiting short set-up times. Compact NMR instruments make NMR spectroscopy accessible in industrial and harsh environments for advanced process Monitoring and control, as demonstrated within the European Union’s Horizon 2020 project CONSENS. We present a range of approaches for the automated spectra analysis moving from conventional multivariate statistical approach, (i.e., Partial Least Squares Regression) to physically motivated spectral models (i.e., Indirect Hard Modelling and Quantum Mechanical calculations). By using the benefits of traditional qNMR experiments data analysis models can meet the demands of the PAT community (Process Analytical Technology) regarding low calibration effort/calibration free methods, fast adaptions for new reactants or derivatives and robust automation schemes. T2 - 13. Dresdner Sensor Symposium CY - Dresden, Germany DA - 04.12.2017 KW - Online NMR spectroscopy KW - Process control KW - Partial least squares regression KW - Indirect hard modeling KW - Quantum mechanics KW - First principles PY - 2017 UR - https://www.ama-science.org/proceedings/details/2748 SN - 978-3-9816876-5-1 U6 - https://doi.org/10.5162/13dss2017/P2.07 SP - P2, 209 EP - 212 PB - AMA Service GmbH CY - Berlin AN - OPUS4-43254 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kern, Simon A1 - Meyer, Klas A1 - Guhl, Svetlana A1 - Gräßer, Patrick A1 - Wander, Lukas A1 - Paul, Andrea A1 - Maiwald, Michael T1 - Low field NMR spectroscopy for sustainable and flexible production of high quality chemical products N2 - The main development goal of process industries is to advance the continuous production of high-value products that meet high quality demands in flexible intensified continuous plants by introducing novel online sensing equipment and closed-loop control (CONSENS – integrated control and sensing- is funded from the European Union’s Horizon 2020 research and innovation programme). Therefore, we present the field integration of a benchtop NMR instrument into a modular production environment, focussing on suitable equipment for operation in hazardous areas with risk of explosive atmospheres. We investigated a pharmaceutical reaction step in order to describe challenges for the experimental design, the evaluation of complex NMR spectra and demonstrate automated data analysis tools. T2 - 5th Panic - Practical Applications of NMR in Industry Conferece CY - Hilton Head Island, SC 29928, USA DA - 20.02.2017 KW - Online NMR spectroscopy KW - Automated data evaluation KW - Process control PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-392333 AN - OPUS4-39233 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -