TY - CONF A1 - Guhl, Svetlana A1 - Meyer, Klas A1 - Kern, Simon A1 - Gräßer, Patrick A1 - Maiwald, Michael ED - Maiwald, Michael T1 - Process monitoring of an intensified continuous production unit with compact NMR spectroscopy N2 - Monitoring chemical reactions is the key to chemical process control. Today, mainly optical online methods are applied. NMR spectroscopy has a high potential for direct loop process control. Compact NMR instruments based on permanent magnets are robust and relatively inexpensive analyzers, which feature advantages like low cost, low maintenance, ease of use, and cryogen-free operation. Instruments for online NMR measurements equipped with a flow-through cell, possessing a good signal-to-noise-ratio, sufficient robustness, and meeting the requirements for integration into industrial plants (i.e., explosion safety and fully automated data analysis) are cur-rently not available off the rack. Recently, promising benchtop NMR instruments with acceptable performance came to market and process integrated sensors developed on basis of such laboratory instruments are on their way. T2 - 12. Kolloquium des Arbeitskreises Prozessanalytik CY - Berlin, Germany DA - 28.11.2016 KW - Online NMR spectroscopy KW - Modular production units KW - Low field NMR spectroscopy PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-383646 SP - P17, 75 EP - 77 AN - OPUS4-38364 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kern, Simon A1 - Meyer, Klas A1 - Guhl, Svetlana A1 - Gräßer, Patrick A1 - Paul, Andrea A1 - King, R. A1 - Maiwald, Michael T1 - Online low-field NMR spectroscopy for process control of an industrial lithiation reaction—automated data analysis N2 - Monitoring specific chemical properties is the key to chemical process control. Today, mainly optical online methods are applied, which require time- and cost-intensive calibration effort. NMR spectroscopy, with its advantage being a direct comparison method without need for calibration, has a high potential for closed-loop process control while exhibiting short set-up times. Compact NMR instruments make NMR spectroscopy accessible in industrial and rough environments for process monitoring and advanced process control strategies. We present a fully automated data analysis approach which is completely based on physically motivated spectral models as first principles information (Indirect Hard Modelling – IHM) and applied it to a given pharmaceutical lithiation reaction in the framework of the European Union’s Horizon 2020 project CONSENS. Online low-field NMR (LF NMR) data was analysed by IHM with low calibration effort, compared to a multivariate PLS-R (Partial Least Squares Regression) approach, and both validated using online high-field NMR (HF NMR) spectroscopy. KW - Online NMR spectroscopy KW - Process analytical technology KW - Partial Least Squares Regression KW - Indirect Hard Modeling KW - Benchtop NMR Spectroscopy KW - Smart Sensors KW - CONSENS PY - 2018 UR - https://link.springer.com/article/10.1007/s00216-018-1020-z U6 - https://doi.org/10.1007/s00216-018-1020-z SN - 1618-2642 SN - 1618-2650 VL - 410 IS - 14 SP - 3349 EP - 3360 PB - Springer CY - Berlin, Heidelberg AN - OPUS4-44847 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -