TY - CONF A1 - Gottu Mukkula, A. R. A1 - Engell, S. A1 - Kern, Simon A1 - Guhl, Svetlana A1 - Meyer, Klas A1 - Maiwald, Michael T1 - PAT-basierte iterative Optimierung der Fahrweise eines kontinuierlichen organischen Syntheseprozesses N2 - Im Zuge der Digitalisierung der Prozessindustrie werden zunehmend modellbasiere Echtzeitoptimierungsverfahren eingesetzt, sog. „Advanced Process Control“. Mithilfe der sogenannten Modifier-Adaptation ist eine iterative Betriebspunktoptimierung auch mit ungenauen Modellen möglich, sofern zuverlässige Prozessdaten zur Verfügung stehen. Am Beispiel eines smarten Online-NMR-Sensors, der in einem EU-Projekt von der BAM entwickelt wurde, konnte das Konzept in einer modularen Produktionsanlage zur Herstellung eines pharmazeutischen Wirkstoffs erfolgreich getestet werden. T2 - ProcessNet-Jahrestagung und 33. DECHEMA-Jahrestagung der Biotechnologen CY - Aachen, Germany DA - 10.09.2018 KW - Prozessanalytik KW - Echtzeitoptimierungsverfahren KW - Modifier-Adaptation KW - Prozess-Steuerung KW - Betriebspunktoptimierung KW - CONSENS PY - 2018 UR - https://onlinelibrary.wiley.com/doi/abs/10.1002/cite.201855233 U6 - https://doi.org/10.1002/cite.201855233 SN - 0009-286X VL - 90 SP - 1237 EP - 1237 PB - Wiley-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-45902 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gottu Mukkula, A. R. A1 - Kern, Simon A1 - Salge, M. A1 - Holtkamp, M. A1 - Guhl, Svetlana A1 - Fleischer, C. A1 - Meyer, Klas A1 - Remelhe, M. A1 - Maiwald, Michael A1 - Engell, S. T1 - An Application of Modifier Adaptation with Quadratic Approximation on a Pilot Scale Plant in Industrial Environment N2 - The goal of this work is to identify the optimal operating input for a lithiation reaction that is performed in a highly innovative pilot scale continuous flow chemical plant in an industrial environment, taking into account the process and safety constraints. The main challenge is to identify the optimum operation in the absence of information about the reaction mechanism and the reaction kinetics. We employ an iterative real-time optimization scheme called modifier adaptation with quadratic approximation (MAWQA) to identify the plant optimum in the presence of plant-model mismatch and measurement noise. A novel NMR PAT-sensor is used to measure the concentration of the reactants and of the product at the reactor outlet. The experiment results demonstrate the capabilities of the iterative optimization using the MAWQA algorithm in driving a complex real plant to an economically optimal operating point in the presence of plant-model mismatch and of process and measurement uncertainties. KW - Process Analytical Technology KW - Online NMR Spectroscopy KW - Process Industry KW - Iterative real-time optimization KW - Modifier adaptation KW - Plant-model mismatch KW - Reactor control KW - CONSENS PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-524531 SN - 1522-2640 VL - 53 IS - 2 SP - 11773 EP - 11779 PB - Elsevier CY - Amsterdam AN - OPUS4-52453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Guhl, Svetlana A1 - Kern, Simon A1 - Meyer, Klas A1 - Wander, Lukas A1 - Bornemann-Pfeiffer, Martin A1 - Maiwald, Michael T1 - Produzieren Sie schon oder kalibrieren Sie noch? – Online-NMR-Spektrometer als Smarte Feldgeräte N2 - Der Vortrag zeigt allgemeine Anforderungen an "smarte Feldgeräte" und deren Entwicklung in den vergangenen Jahren. Am Beispiel eines smarten Online-NMR-Sensors, der in einem EU-Projekt von der BAM entwickelt wurde, wird die Umsetzung der Anforderung aufgezeigt. Schließlich werden weitere Technologieanforderungen und Lösungsansätze vorgestellt. T2 - ProcessNet-Jahrestagung und 33. DECHEMA-Jahrestagung der Biotechnologen CY - Aachen, Germany DA - 10.09.2018 KW - Prozessanalytik KW - Prozessindustrie KW - Online-NMR-Spektroskopie KW - Datenkonzepte KW - Datenanalyse KW - CONSENS PY - 2018 UR - https://onlinelibrary.wiley.com/doi/abs/10.1002/cite.201855229 U6 - https://doi.org/10.1002/cite.201855229 SN - 0009-286X N1 - Geburtsname von Bornemann-Pfeiffer, Martin: Bornemann, M. - Birth name of Bornemann-Pfeiffer, Martin: Bornemann, M. VL - 90 IS - 9 SP - 1236 EP - 1236 PB - Wiley-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-45901 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kern, Simon A1 - Meyer, Klas A1 - Guhl, Svetlana A1 - Gräßer, Patrick A1 - Paul, Andrea A1 - King, R. A1 - Maiwald, Michael T1 - Online low-field NMR spectroscopy for process control of an industrial lithiation reaction—automated data analysis N2 - Monitoring specific chemical properties is the key to chemical process control. Today, mainly optical online methods are applied, which require time- and cost-intensive calibration effort. NMR spectroscopy, with its advantage being a direct comparison method without need for calibration, has a high potential for closed-loop process control while exhibiting short set-up times. Compact NMR instruments make NMR spectroscopy accessible in industrial and rough environments for process monitoring and advanced process control strategies. We present a fully automated data analysis approach which is completely based on physically motivated spectral models as first principles information (Indirect Hard Modelling – IHM) and applied it to a given pharmaceutical lithiation reaction in the framework of the European Union’s Horizon 2020 project CONSENS. Online low-field NMR (LF NMR) data was analysed by IHM with low calibration effort, compared to a multivariate PLS-R (Partial Least Squares Regression) approach, and both validated using online high-field NMR (HF NMR) spectroscopy. KW - Online NMR spectroscopy KW - Process analytical technology KW - Partial Least Squares Regression KW - Indirect Hard Modeling KW - Benchtop NMR Spectroscopy KW - Smart Sensors KW - CONSENS PY - 2018 UR - https://link.springer.com/article/10.1007/s00216-018-1020-z U6 - https://doi.org/10.1007/s00216-018-1020-z SN - 1618-2642 SN - 1618-2650 VL - 410 IS - 14 SP - 3349 EP - 3360 PB - Springer CY - Berlin, Heidelberg AN - OPUS4-44847 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Kern, Simon A1 - Wander, Lukas A1 - Meyer, Klas A1 - Guhl, Svetlana A1 - Gottu Mukkula, A. R. A1 - Holtkamp, M. A1 - Salge, M. A1 - Fleischer, C. A1 - Weber, N. A1 - Engell, S. A1 - Paul, Andrea A1 - King, R. A1 - Maiwald, Michael T1 - Raw data of pilot plant runs for CONSENS project (Case study 1) N2 - In case study one of the CONSENS project, two aromatic substances were coupled by a lithiation reaction, which is a prominent example in pharmaceutical industry. The two aromatic reactants (Aniline and o-FNB) were mixed with Lithium-base (LiHMDS) in a continuous modular plant to produce the desired product (Li-NDPA) and a salt (LiF). The salt precipitates which leads to the formation of particles. The feed streams were subject to variation to drive the plant to its optimum. The uploaded data comprises the results from four days during continuous plant operation time. Each day is denoted from day 1-4 and represents the dates 2017-09-26, 2017-09-28, 2017-10-10, 2017-10-17. In the following the contents of the files are explained. KW - Process Analytical Technology KW - Multivariate Data Analysis KW - Nuclear Magnetic Resonance KW - Near Infrared Spectroscopy KW - Continuous Manufacturing KW - CONSENS PY - 2018 U6 - https://doi.org/10.5281/zenodo.1438233 PB - Zenodo CY - Geneva AN - OPUS4-48063 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kern, Simon A1 - Wander, Lukas A1 - Meyer, Klas A1 - Guhl, Svetlana A1 - Gottu Mukkula, A. R. A1 - Holtkamp, M. A1 - Salge, M. A1 - Fleischer, C. A1 - Weber, N. A1 - Engell, S. A1 - Paul, Andrea A1 - Pereira Remelhe, M. A1 - Maiwald, Michael T1 - Flexible automation with compact NMR spectroscopy for continuous production of pharmaceuticals N2 - Modular plants using intensified continuous processes represent an appealing concept for the production of pharmaceuticals. It can improve quality, safety, sustainability, and profitability compared to batch processes; besides, it enables plug-and-produce reconfiguration for fast product changes. To facilitate this flexibility by real-time quality control, we developed a solution that can be adapted quickly to new processes and is based on a compact nuclear magnetic resonance (NMR) spectrometer. The NMR sensor is a benchtop device enhanced to the requirements of automated chemical production including robust evaluation of sensor data. Beyond monitoring the product quality, online NMR data was used in a new iterative optimization approach to maximize the plant profit and served as a reliable reference for the calibration of a near-infrared (NIR) spectrometer. The overall approach was demonstrated on a commercial-scale pilot plant using a metal-organic reaction with pharmaceutical relevance. KW - NMR Spectroscopy KW - NIR Spectroscopy KW - Real-time process monitoring KW - Real-time quality control KW - Continuous processes KW - CONSENS KW - Data Fusion PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-480623 SN - 1618-2642 SN - 1618-2650 VL - 411 IS - 14 SP - 3037 EP - 3046 PB - Springer Nature CY - Heidelberg AN - OPUS4-48062 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -