TY - RPRT A1 - Kern, Simon A1 - Guhl, Svetlana A1 - Meyer, Klas A1 - Maiwald, Michael ED - Maiwald, Michael T1 - Validation report on NMR N2 - The departure from the current automation landscape to next generation automation concepts for the process industry has already begun. Smart functions of sensors simplify their use and enable plug and play integration, even though they may appear to be more complex at first sight. Smart sensors enable concepts like self-diagnostics, self-calibration, and self-configuration/ parameterization whenever our current automation landscape allows it. Here we summarize the currently discussed general requirements for process sensors 4.0 and introduce a smart online NMR sensor module as example, which was developed for an intensified industrial process funded by the EU’s Horizon 2020 research and innovation programme (www.consensspire.eu). KW - Process Monitoring KW - Online NMR Spectroscopy KW - Indirect Hard Modeling KW - Process Control KW - Process Analytical Technology KW - CONSENS PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-435521 SP - 1 EP - 31 AN - OPUS4-43552 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kern, Simon A1 - Gräßer, Patrick A1 - Zientek, Nicolai A1 - Maiwald, Michael T1 - First steps towards field integration of benchtop NMR spectroscopy for online monitoring and process control N2 - Online monitoring and process control requires fast and noninvasive analytical methods, which are able to monitor the concentration of reactants in multicomponent mixtures with parts-per-million resolution. Online NMR spectros-copy can meet these demands when flow probes are directly coupled to reactors, since this method features a high linearity between absolute signal area and sample concentration, which makes it an absolute analytical com-parison method being independent on the matrix. Due to improved magnet design and field shimming strategies portable and robust instruments have been introduced to the market by several manufacturers during the last few years. First studies with this technology showed promising results to monitor chemical reaction in the laboratory. T2 - 11. Kolloquium Arbeitskreis Prozessanalytik CY - Wien, Austria DA - 30.11.2015 KW - Online NMR Spectroscopy KW - Smart Sensors KW - Prozess-Spektroskopie KW - Process Analytical Technology KW - Process control PY - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-388411 SP - 43 EP - 44 AN - OPUS4-38841 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kern, Simon A1 - Meyer, Klas A1 - Wander, Lukas A1 - Guhl, Svetlana A1 - Paul, Andrea A1 - Maiwald, Michael T1 - Online low-field NMR spectroscopy in modular plants for chemical production N2 - Die Online-Reaktionsverfolgung ist der Schlüssel zur chemischen Prozesskontrolle. Heute werden in diesem Bereich hauptsächlich Methoden der optischen Spektroskopie eingesetzt. Durch aktuelle Entwicklungen im Bereich kompakter Niederfeld-NMR-Spektrometer auf Basis von Permanentmagnetsystemen ist erstmals auch die Integration unmittelbar in einer industriellen Produktionsumgebung möglich. Diese Geräte sind robuste und relativ preiswerte Analysatoren, welche die Vorteile eines wartungsfreundlichen Betriebs ohne Notwendigkeit von kryogenen Flüssigkeiten, sowie eine einfache Handhabung vereinen. Aktuell auf dem Markt verfügbare Geräte sind jedoch ausschließlich auf den Einsatz im Laborbetrieb ausgerichtet. Für die Kopplung als Online-Methode im Prozesseinsatz ist die Entwicklung geeigneter Durchflusszellen notwendig. Diese ermöglichen idealerweise ein gutes Signal-Rausch-Verhältnis, eine ausreichende Robustheit und müssen die Anforderungen an die Integration in industrielle Anlagen erfüllen (z.B. Explosionsschutz, Temperierung). Intensivierte kontinuierliche Prozesse stehen im Fokus der aktuellen Forschung. Im Vergleich zu etablierten Batch-Verfahren besteht in modularen chemischen Anlagen die Möglichkeit durch kurze Umrüstzeiten zwischen Kampagnen effektiv auf die Marktentwicklung zu reagieren. Bei kontinuierlicher Prozessführung sind Online-Sensoren und eine zuverlässige und schnelle Regelung der Produktqualität essentiell. Andernfalls besteht ein großes Risiko, große Mengen nicht-spezifikationskonformer Produkte zu erhalten. Dies wird im Rahmen des Forschungsprojekts CONSENS (Integrated Control and Sensing) der Europäischen Union durch die Entwicklung und Integration intelligenter Sensormodule zur Prozessüberwachung und -steuerung in modularen Anlagenkonzepten thematisiert. Das vorgestellte NMR-Analysatormodul mit der Baugröße von 57 x 57 x 85 cm basiert auf einem kompakten 43,5-MHz-NMR-Spektrometer. Dieses ist zusammen mit einem Akquisitionsrechner und einer programmierbaren Steuerung für die automatisierte Daten-aufbereitung (Phasing, Baseline-Korrektur) und Auswertung in ein explosionsgeschütztes Gehäuse integriert. Für die automatisierte Datenanalyse kommt die Methode des Indirect Hard Modelings (IHM) zum Einsatz. Die entwickelten IHM-Modelle werden mittels Online-Hochfeld-NMR-Spektroskopie als Referenzverfahren in einem Versuchsaufbau zur Überwachung kontinuierlicher Reaktionen auf Basis eines mit Spritzenpumpen betriebenen 1/8" Rohrreaktors validiert. N2 - Monitoring chemical reactions is the key to chemical process control. Today, mainly optical online methods are applied. NMR spectroscopy has a high potential for direct loop process control. Compact NMR instruments based on permanent magnets are robust and relatively inexpensive analysers, which feature advantages like low cost, low maintenance, ease of use, and cryogen-free operation. Instruments for online NMR measurements equipped with a flow-through cell, possessing a good signal-to-noise-ratio, sufficient robustness, and meeting the requirements for integration into industrial plants (i.e., explosion safety and fully automated data analysis) are currently not available off the rack. Intensified continuous processes are in focus of current research. Flexible (modular) chemical plants can produce different products using the same equipment with short down-times between campaigns and quick introduction of new products to the market. In continuous flow processes online sensor data and tight closed-loop control of the product quality are mandatory. If these are not available, there is a huge risk of producing large amounts of out-of-spec (OOS) products. This is addressed in the European Union’s Research Project CONSENS (Integrated Control and Sensing [3]) by development and integration of smart sensor modules for process monitoring and control within such modular plant setups. The presented NMR module is provided in an explosion proof housing of 57 x 57 x 85 cm module size and involves a compact 43.5 MHz NMR spectrometer together with an acquisition unit and a programmable logic controller for automated data preparation (phasing, baseline correction) and evaluation. Indirect Hard Modeling (IHM) was selected for data analysis of the low-field NMR spectra. A set-up for monitoring continuous reactions in a thermostated 1/8” tubular reactor using automated syringe pumps was used to validate the IHM models by using high-field NMR spectroscopy as analytical reference method. T2 - Praktische Probleme der Kernresonanzspektroskopie CY - Erlangen, Germany DA - 16.01.2017 KW - Online NMR spectroscopy KW - Automated data evaluation KW - NMR sensor KW - Process control PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-389819 AN - OPUS4-38981 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kern, Simon A1 - Meyer, Klas A1 - Paul, Andrea A1 - Maiwald, Michael T1 - Ugly Spectra and Lousy interfaces – Challenges for Compact NMR Spectroscopy in Process Control N2 - With the introduction of advanced process analytical technology, the closeness of key process variables to their limits can be directly controlled and the product can be classified or even released in real time. Compact NMR instruments can make NMR spectroscopy accessible in industrial and harsh environments for process control. T2 - ProcessNet-Jahrestagung und 32. DECHEMA-Jahrestagung der Biotechnologen 2016 CY - Aachen, Germany DA - 12.09.2016 KW - Industrie 4.0 KW - CONSENS KW - Reaction Monitoring KW - Smart Sensors KW - Online NMR Spectroscopy KW - Lithiation PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-373895 AN - OPUS4-37389 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kern, Simon A1 - Meyer, Klas A1 - Guhl, Svetlana A1 - Gräßer, Patrick A1 - Wander, Lukas A1 - Paul, Andrea A1 - Maiwald, Michael T1 - Low field NMR spectroscopy for sustainable and flexible production of high quality chemical products N2 - The main development goal of process industries is to advance the continuous production of high-value products that meet high quality demands in flexible intensified continuous plants by introducing novel online sensing equipment and closed-loop control (CONSENS – integrated control and sensing- is funded from the European Union’s Horizon 2020 research and innovation programme). Therefore, we present the field integration of a benchtop NMR instrument into a modular production environment, focussing on suitable equipment for operation in hazardous areas with risk of explosive atmospheres. We investigated a pharmaceutical reaction step in order to describe challenges for the experimental design, the evaluation of complex NMR spectra and demonstrate automated data analysis tools. T2 - 5th Panic - Practical Applications of NMR in Industry Conferece CY - Hilton Head Island, SC 29928, USA DA - 20.02.2017 KW - Online NMR spectroscopy KW - Automated data evaluation KW - Process control PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-392333 AN - OPUS4-39233 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kern, Simon A1 - Guhl, Svetlana A1 - Meyer, Klas A1 - Paul, Andrea A1 - Wander, Lukas A1 - Gräßer, Patrick A1 - Maiwald, Michael T1 - Design and validation of a compact NMR analyser N2 - Monitoring chemical reactions is the key to chemical process control. Today, mainly optical online methods are applied. NMR spectroscopy has a high potential for direct loop process control. Compact NMR instruments based on permanent magnets are robust and relatively inexpensive analysers, which feature advantages like low cost, low maintenance, ease of use, and cryogen-free operation. Instruments for online NMR measurements equipped with a flow-through cell, possessing a good signal-to-noise-ratio, sufficient robustness, and meeting the requirements for integration into industrial plants (i.e., explosion safety and fully automated data analysis) are currently not available off the rack. Intensified continuous processes are in focus of current research. Flexible (modular) chemical plants can produce different products using the same equipment with short down-times between campaigns and quick introduction of new products to the market. In continuous flow processes online sensor data and tight closed-loop control of the product quality are mandatory. If these are not available, there is a huge risk of producing large amounts of out-of-spec (OOS) products. This is addressed in the European Union’s Research Project CONSENS (Integrated Control and Sensing) by development and integration of smart sensor modules for process monitoring and control within such modular plant setups. The presented NMR module is provided in an explosion proof housing of 57 x 57 x 85 cm module size and involves a compact 43.5 MHz NMR spectrometer together with an acquisition unit and a programmable logic controller for automated data preparation (phasing, baseline correction) and evaluation. Indirect Hard Modeling (IHM) was selected for data analysis of the low-field NMR spectra. A set-up for monitoring continuous reactions in a thermostated 1/8” tubular reactor using automated syringe pumps was used to validate the IHM models by using high-field NMR spectroscopy as analytical reference method. T2 - EuroPACT 2017 CY - Potsdam, Germany DA - 10.05.2017 KW - Online reaction monitoring KW - NMR spectroscopy PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-402822 AN - OPUS4-40282 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kern, Simon A1 - Meyer, Klas A1 - Maiwald, Michael T1 - Automated data preparation and spectral modeling N2 - For reaction monitoring and process control using NMR instruments, in particular, after acquisition of the FID the data needs to be corrected in real-time for common effects using fast interfaces and automated methods. Conventionally, sensors have to be calibrated in a first step to find a response curve between the sensor signal and physical or chemical properties of the sample. In a second step, a model of the response between these parameters (e.g., concentrations) and the targeted quality specifications is needed. Thanks to the direct proportionality of the molar concentrations and the NMR signal, it could directly be used in the near future to relate the process target quality specification to sensor data – also in combination with multiple other sensor or process information. T2 - qNMR Summit 2017 CY - Berlin, Germany DA - 16.03.2017 KW - Quantitative NMR spectroscopy KW - Automated data evaluation PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-393998 AN - OPUS4-39399 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kern, Simon A1 - Meyer, Klas A1 - Gräßer, Patrick A1 - Guhl, Svetlana A1 - Paul, Andrea A1 - Maiwald, Michael T1 - Ugly spectra and lousy interfaces – challenges for compact NMR spectroscopy in process control N2 - With the introduction of advanced process analytical technology, the closeness of key process variables to their limits can be directly controlled and the product can be classified or even released in real time. Compact NMR instruments can make NMR spectroscopy accessible in industrial and harsh environments for process control. T2 - ProcessNet-Jahrestagung und 32. DECHEMA-Jahrestagung der Biotechnologen 2016 CY - Aachen, Germany DA - 12.09.2016 KW - Industrie 4.0 KW - Online NMR spectroscopy KW - Reaction monitoring KW - Smart sensors PY - 2016 AN - OPUS4-37405 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kern, Simon A1 - Michalik-Onichimowska, Aleksandra A1 - Riedel, Jens A1 - Panne, Ulrich A1 - King, R. A1 - Maiwald, Michael T1 - “Click” analytics for “click” chemistry – a simple method for calibration-free evaluation of online NMR spectra N2 - Currently research in chemical manufacturing moves towards flexible plug-and-play approaches focusing on modular plants, capable of producing small scales on-demand with short down-times between individual cam-paigns. This approach allows for efficient use of hardware, a faster optimization of the process conditions, and thus, an accelerated introduction of new products to the market. Driven mostly by the search for chemical syntheses under biocompatible conditions, so-called “click” chemistry rapidly became a growing field of research. The re-sulting simple one-pot reactions are so far only scarcely accompanied by an adequate optimization via compara-bly straightforward and robust analysis techniques. Here we report on a fast and reliable calibration-free online high field NMR monitoring approach for technical mixtures. It combines a versatile fluidic system, continuous-flow measurement with a time interval of 20 s per spectrum, and a robust, automated algo-rithm to interpret the ob-tained data. All spectra were acquired using a 500 MHz NMR spectrometer (Varian) with a dual band flow probe having a 1/16 inch polymer tubing working as a flow cell. Single scan 1H spectra were recorded with an acquisition time of 5 s, relaxation delay of 15 s. T2 - 12. Kolloquium des Arbeitskreises Prozessanalytik CY - Berlin, Germany DA - 28.11.2016 KW - Online NMR KW - Online monitoring KW - “Click” chemistry PY - 2016 AN - OPUS4-38585 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kern, Simon A1 - Michalik-Onichimowska, Aleksandra A1 - Riedel, Jens A1 - Panne, Ulrich A1 - King, R. A1 - Maiwald, Michael T1 - Fitting of physically motivated spectral models – a simple calibration-free method for evaluation of online NMR spectra N2 - Currently, research in chemical manufacturing moves towards flexible plug-and-play approaches focusing on modular plants, capable of producing small scales on-demand with short down-times between individual campaigns. This approach allows for efficient use of hardware, a faster optimization of the process conditions, and thus, an accelerated introduction of new products to the market. Driven mostly by the search for chemical syntheses under biocompatible conditions, so-called “click” chemistry rapidly became a growing field of research. The resulting simple one-pot reactions are so far only scarcely accompanied by an adequate optimization via comparably straightforward and robust analysis techniques. Here we report on a fast and reliable calibration-free online high field NMR monitoring approach for technical mixtures. It combines a versatile fluidic system, continuous-flow measurement with a time interval of 20 s per spectrum, and a robust, automated algorithm to interpret the obtained data. All spectra were acquired using a 500 MHz NMR spectrometer (Varian) with a dual band flow probe having a 1/16-inch polymer tubing working as a flow cell. Single scan 1H NMR spectra were recorded with an acquisition time of 5 s, relaxation delay of 15 s. As a proof-of-concept, the thiol-ene coupling between N-boc cysteine methyl ester and allyl alcohol was conducted in non-deuterated solvents while its time-resolved behaviour was characterised with step tracer experiments. Through the application of spectral modeling the signal area for each reactant can be deconvoluted in the online spectra and thus converted to the respective concentrations or molar ratios. The signals which were suitable for direct integration were used herein for comparison purposes of both methods. T2 - Quantitative NMR Methods for Reaction and Process Monitoring (NMRPM) CY - Kaiserslautern, Germany DA - 19.01.2017 KW - Online NMR spectroscopy KW - Thiol-ene coupling KW - Data processig PY - 2017 AN - OPUS4-39009 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kern, Simon A1 - Michalik-Onichimowska, Aleksandra A1 - Riedel, Jens A1 - Panne, Ulrich A1 - King, R. A1 - Maiwald, Michael T1 - “Click” analytics for “click” chemistry – a simple method for calibration-free evaluation of online NMR spectra N2 - Currently research in chemical manufacturing moves towards flexible plug-and-play approaches focusing on modular plants, capable of producing small scales on-demand with short down-times between individual campaigns. This approach allows for efficient use of hardware, a faster optimization of the process conditions, and thus, an accelerated introduction of new products to the market [1]. Driven mostly by the search for chemical syntheses under biocompatible conditions, so-called “click” chemistry rapidly became a growing field of research. The resulting simple one-pot reactions are so far only scarcely accompanied by an adequate optimization via comparably straightforward and robust analysis techniques. Here we report on a fast and reliable calibration-free online high field NMR monitoring approach for technical mixtures. It combines a versatile fluidic system, continuous-flow measurement with a time interval of 20 s per spectrum, and a robust, automated algo-rithm to interpret the obtained data. All spectra were acquired using a 500 MHz NMR spectrometer (Varian) with a dual band flow probe having a 1/16 inch polymer tubing working as a flow cell. Single scan 1H spectra were recorded with an acquisition time of 5 s, relaxation delay of 15 s. T2 - 11. Doktorandenseminar 2017 des Arbeitskreis Prozessanalytik der GDCh und DECHEMA CY - Berlin, Germany DA - 12.03.2017 KW - Online NMR Spectroscopy KW - Click chemistry KW - Data analysis PY - 2017 AN - OPUS4-39397 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kern, Simon A1 - Wander, Lukas A1 - Bornemann-Pfeiffer, Martin A1 - Guhl, Svetlana A1 - Meyer, Klas A1 - Maiwald, Michael T1 - Novel Flow Cell Designs for Process Monitoring with Compact NMR Spectroscopy N2 - Compact nuclear magnetic resonance (NMR) instruments make NMR spectroscopy and relaxometry accessible in industrial and harsh environments for reaction characterization and process control. Robust field integration of NMR systems have to face explosion protection or integration into process control systems with short set-up times. This paves the way for industrial automation in real process environments. The design of failsafe, temperature and pressure resistant flow through cells along with their NMR-specific requirements is an essential cornerstone to enter industrial production plants and fulfill explosion safety requirements. Additionally, if fast reactions are monitored, suitable mixing devices need to be placed in close vicinity to the measuring volume to mix the reactants properly. NMR-specific requirements aim at full quantitative pre-magnetization and acquisition with maximum sensitivity while reducing sample transfer times and dwell-times. All parameters are individually dependent on the applied NMR instrument. Luckily, an increasing number of applications are reported together with an increasing variety of commercial equipment. However, these contributions have to be reviewed thoroughly. The performance of sample flow cells commonly used in online analytics and especially for low-field NMR spectroscopy was experimentally and theoretically investigated by 1H-NMR experiments and numerical simulations. Especially, the applicability of 3D printed zirconium dioxide for innovative flow cell designs was of interest. Here, we demonstrate and discuss an automated test method to determine the critical parameters of flow through cells for quantitative online NMR spectroscopy. The setup is based on randomized setpoints of flow rates in order to reduce temperature related effects. Five flow cells and tubing were assessed and compared for high-field as well as low-field NMR spectrometers. T2 - Practical Applications of NMR in Industry Conference ​(PANIC) 2018 CY - La Jolla, California, USA DA - 04.03.2018 KW - Process Monitoring KW - Process Control KW - Flow Cell KW - Online NMR Spectroscopy KW - Additive Manufacturing KW - CONSENS PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-444364 N1 - Geburtsname von Bornemann-Pfeiffer, Martin: Bornemann, M. - Birth name of Bornemann-Pfeiffer, Martin: Bornemann, M. AN - OPUS4-44436 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kern, Simon A1 - Michalik-Onichimowska, Aleksandra A1 - Riedel, Jens A1 - Panne, Ulrich A1 - King, R. A1 - Maiwald, Michael T1 - “Click” analytics for “click” chemistry – a simple method for calibration-free evaluation of online NMR spectra N2 - Currently research in chemical manufacturing moves towards flexible plug-and-play approaches focusing on modular plants, capable of producing small scales on-demand with short down-times between individual campaigns. This approach allows for efficient use of hardware, a faster optimization of the process conditions, and thus, an accelerated introduction of new products to the market. Driven mostly by the search for chemical syntheses under biocompatible conditions, so-called “click” chemistry rapidly became a growing field of research. The resulting simple one-pot reactions are so far only scarcely accompanied by an adequate optimization via comparably straightforward and robust analysis techniques. Here we report on a fast and reliable calibration-free online high field NMR monitoring approach for technical mixtures. It combines a versatile fluidic system, continuous-flow measurement with a time interval of 20 s per spectrum, and a robust, automated algorithm to interpret the obtained data. All spectra were acquired using a 500 MHz NMR spectrometer (Varian) with a dual band flow probe having a 1/16 inch polymer tubing working as a flow cell. Single scan 1H spectra were recorded with an acquisition time of 5 s, relaxation delay of 15 s. As a proof-of-concept, the thiol-ene coupling between N-boc cysteine methyl ester and allyl alcohol was conducted in non-deuterated solvents while its time-resolved behaviour was characterised with step tracer experiments Through the application of spectral modeling the signal area for each reactant can be deconvoluted in the online spectra and thus converted to the respective concentrations or molar ratios. The signals which were suitable for direct integration were used herein for comparison purposes of both methods. T2 - EuroPACT 2017 CY - Potsdam, Germany DA - 10.05.2017 KW - Online NMR Spectroscopy PY - 2017 AN - OPUS4-40283 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kern, Simon A1 - Meyer, Klas A1 - Wander, Lukas A1 - Guhl, Svetlana A1 - Paul, Andrea A1 - Maiwald, Michael T1 - Process monitoring of intensified continuous production units with compact NMR spectroscopy N2 - Monitoring chemical reactions is the key to chemical process control. Today, mainly optical online methods are applied. NMR spectroscopy has a high potential for direct loop process control. Compact NMR instruments based on permanent magnets are robust and inexpensive analysers, which feature advantages like low maintenance, ease of use, and cryogen-free operation. Instruments for online NMR measurements equipped with a flow-through cell, possessing a good signal-to-noise-ratio, robustness, and meeting the requirements for integration into industrial plants (i.e., explosion safety and fully automated data analysis) are currently not available off the rack. Intensified continuous processes are in focus of current research. Flexible (modular) chemical plants can produce different products using the same equipment with short down-times between campaigns and quick introduction of new products to the market. In continuous flow processes online sensor data and tight closed-loop control of the product quality are mandatory. Otherwise there is a huge risk of producing large amounts of out-of-spec (OOS) products. This is addressed in the European Union’s Research Project CONSENS (www.consens-spire.eu) by development and integration of smart sensor modules for process monitoring and control within such modular plant setups. The presented NMR module is provided in an explosion proof housing with a module size of 57 x 57 x 85 cm and involves a compact 43.5 MHz NMR spectrometer together with an acquisition unit and a programmable logic controller for automated data preparation (phasing, baseline correction) and evaluation. Indirect Hard Modeling (IHM) was selected for data analysis of the low-field NMR spectra. A set-up for monitoring continuous reactions in a thermostated 1/8” tubular reactor using automated syringe pumps was used to validate the IHM models by using high-field NMR spectroscopy as analytical reference method. T2 - Seminar, Institute of Technical Biocatalysis, Hamburg University of Technology CY - Hamburg, Germany DA - 13.01.2017 KW - Process monitoring KW - Online NMR spectroscopy KW - Indirect hard modeling KW - Process control KW - Process analytical technology KW - CONSENS PY - 2017 AN - OPUS4-43551 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kern, Simon A1 - Guhl, Svetlana A1 - Meyer, Klas A1 - Paul, Andrea A1 - Maiwald, Michael T1 - Reading between the lines – Automated data analysis for low field NMR spectra N2 - For reaction monitoring and process control using NMR instruments, in particular, after acquisition of the FID the data needs to be corrected in real-time for common effects using fast interfaces and automated methods. When it comes to NMR data evaluation under industrial process conditions, the shape of signals can change drastically due to nonlinear effects. Additionally, the multiplet structure becomes more dominant because of the comparably low-field strengths which results in overlapping of multiple signals. However, the structural and quantitative information is still present but needs to be extracted by applying predictive models. We present a range of approaches for the automated spectra analysis moving from statistical approach, (i.e., Partial Least Squares Regression) to physically motivated spectral models (i.e., Indirect Hard Modeling). By using the benefits of traditional qNMR experiments data analysis models can meet the demands of the PAT community (Process Analytical Technology) regarding low calibration effort/calibration free methods, fast adaptions for new reactants, or derivatives and robust automation schemes. T2 - Small Molecule NMR Conference (SMASH) CY - Baveno, Italy DA - 17.09.2017 KW - Online NMR spectroscopy KW - Data analysis KW - Chemometrics KW - Indirect hard modeling KW - Spectral modeling KW - Line prediction KW - CONSENS KW - SMASH PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-419498 UR - http://www.smashnmr.org/conference/program AN - OPUS4-41949 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Kern, Simon T1 - Prozessüberwachung mittels Niederfeld-NMR-Spektroskopie als Online-Methode N2 - Die Geräteentwicklungen im Bereich der Niederfeld-NMR-Spektroskopie im vergangenen Jahrzehnt ermöglichen den Einsatz kompakter, portabler Magnete mit geringen Streufeldern in Laborumgebungen und industriellen Produktionsanlagen. Somit werden neue Möglichkeiten für hochauflösende NMR-Experimente zur Reaktionsüberwachung eröffnet. Im Rahmen des EU-Projekts CONSENS wurden die Möglichkeiten dieser Methode umfassend anhand einer technisch bedeutenden Reaktion (elektrophile aromatische Substitutionsreaktionen) evaluiert. Um die Flexibilität einer kontinuierlichen und modularen Pilotanlage durch Echtzeit- Qualitätskontrolle zu fördern, wurde ein vollständig automatisiertes Online- NMR-Modul entwickelt. Der Einsatz eines kommerziellen Niederfeld-NMR-Geräts im industriellen Umfeld wurde durch die entwickelten Lösungen der automatisierten Datenanlyse sowie durch ein zertifiziertes Sicherheitskonzept für den Betrieb in explosionsgefährdeten Zonen ermöglicht. Neben der Überwachung der Produktqualität wurden Online-NMR-Daten in einem neuen iterativen Optimierungsansatz zur Maximierung des Anlagenertrags eingesetzt und dienten als zuverlässige Referenz für die Kalibrierung eines Nahinfrarot-Spektrometers. Für die Entwicklung einer robusten Datenauswertung der NMR-Spektren, die dem Anspruch der Flexibilität bei Produktwechseln genügt, wurden zunächst Versuche im Labormaßstab durchgeführt, um eine Datenbasis zu schaffen. In diesen Versuchen wurden die aromatischen Amine Anilin, p-Toluidin und p-Fluoranilin mit o-Fluornitrobenzol gekoppelt. Durch Zugabe einer Organolithium-Verbindung (Li- HMDS) findet ein Protonenaustausch zwischen dem primären Amin und Li-HMDS statt. Dies führt zu einer hohen Reaktionsenthalpie und instabilen Aryllithium-Verbindungen. Die Reaktionen wurden hinsichtlich anfallender Zwischenprodukte mittels Hochfeld-NMR-Spektroskopie analysiert. Nachfolgend wurden die Reaktionen sowohl im Semi-Batch-Verfahren als auch im kontinuierlichen Laborbetrieb mit Online-Niederfeld-NMR-Spektroskopie und Online- Hochfeld-NMR-Spektroskopie untersucht. Da die gemessenen NMR-Spektren besonders im aromatischen Spektralbereich hohe Signalüberlappungen der Reaktanden aufweisen, wurden chemometrische Modelle entwickelt und anhand der Hochfeld-NMR-Methode validiert. Die verwendeten Durchflusszellen für die Niederfeld-NMR-Spektroskopie wurden hinsichtlich ihrer Anwendbarkeit für quantitative Messungen im kontinuierlichen Durchfluss untersucht. Es konnte gezeigt werden, dass Messungen mit einer additiv gefertigten Keramikdurchflusszelle prinzipiell möglich sind. KW - NMR-Spektroskopie KW - Niederfeld-NMR-Spektroskopie KW - Prozessanalytik KW - Industrie 4.0 KW - Indirect Hard Modeling KW - CONSENS PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?10.14279/depositonce-9404 SP - 1 EP - 112 CY - Berlin AN - OPUS4-50196 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kern, Simon A1 - Meyer, Klas A1 - Paul, Andrea A1 - Maiwald, Michael T1 - Online low-field NMR spectroscopy of an industrial lithiation reaction step for process control N2 - Online monitoring and process control requires fast and noninvasive analytical methods, which are able to monitor the concentration of reactants in multicomponent mixtures with parts-per-million resolution. Online NMR spectroscopy can meet these demands when flow probes are directly coupled to reactors, since this method features a high linearity between absolute signal area and sample concentration, which makes it an absolute analytical comparison method being independent on the matrix. Due to improved magnet design and field shimming strategies portable and robust instruments have been introduced to the market by several manufacturers during the last few years. First studies with this technology showed promising results to monitor chemical reaction in the laboratory. Within the project CONSENS, the continuous production of high-value products in small production scale is advanced by introducing benchtop NMR spectroscopy. CONSENS is a research and innovation project on integrated control and sensing for sustainable operation of flexible intensified processes. This poster will present the first steps of the process integration of a benchtop NMR instrument for a lithiation process and outlines further fields of activity and potential challenges. Hereby, the following issues are going to be addressed: explosion-proof housing for the spectrometer, automation of signal processing (data pretreatment, evaluation and communication to the control system), flow cells and measuring conditions. Furthermore, first online spectra of the lithiation reaction in batch mode were acquired in lab scale. The reaction was performed in a 25 mL glass reactor with thermal jackets for temperature control of the reaction mixture. The Li-HMDS was dosed stepwise by using a glass syringe. First spectra in the proton and fluorine domain were recorded online using a flowrate of 3.5 mL min–1 and a simple 5 mm polytetrafluoroethylene tube (PTFE) as a flow cell. T2 - 10. Interdisziplinaeres Doktorandenseminar Fachgruppe "Analytische Chemie" der GDCh CY - Berlin, Germany DA - 28.02.2016 KW - Online NMR Spectroscopy KW - Reaction monitoring PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-354443 AN - OPUS4-35444 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kern, Simon A1 - Maiwald, Michael T1 - First steps towards field integration of benchtop NMR spectroscopy for online monitoring and process control N2 - Online monitoring and process control requires fast and noninvasive analytical methods, which are able to monitor the concentration of reactants in multicomponent mixtures with parts-per-million resolution. Online NMR spectros-copy can meet these demands when flow probes are directly coupled to reactors, since this method features a high linearity between absolute signal area and sample concentration, which makes it an absolute analytical com-parison method being independent on the matrix. Due to improved magnet design and field shimming strategies portable and robust instruments have been introduced to the market by several manufacturers during the last few years. First studies with this technology showed promising results to monitor chemical reaction in the laboratory. Wthin the project CONSENS (www.consens-spire.eu), the continuous production of high-value products in small production scale is advanced by introducing benchtop NMR spectroscopy. CONSENS is a research and innovation project on inte-grated control and sensing for sustainable operation of flexible intensified processes. This poster will present the first steps of the process integration of a benchtop NMR instrument for a lithiation process and outlines further fields of activity and potential challenges. Hereby, the following issues are going to be addressed: explosion-proof housing for the spectrometer, automation of signal processing (data pretreatment, evaluation and communication to the control system), flow cells and measuring conditions. Furthermore, first online spectra of the lithiation reaction in batch mode were acquired in lab scale. The reaction was performed in a 25 mL glass reactor with thermal jackets for temperature control of the reaction mixture. The Li-HMDS was dosed stepwise by using a glass syringe. First spectra in the proton and fluorine domain were recorded online using a flowrate of 3.5 mL min–1 and a simple 5 mm polytetrafluoroethylene tube (PTFE) as a flow cell. T2 - 11. Kolloquium Prozessanalytik CY - Wien, Autria DA - 30.11.2015 PY - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-351597 AN - OPUS4-35159 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kern, Simon A1 - Zientek, Nicolai A1 - Maiwald, Michael A1 - Gräßer, P. T1 - First steps towards field integration of benchtop NMR spectroscopy for online monitoring and process control N2 - Online monitoring and process control requires fast and noninvasive analytical methods, which are able to monitor the concentration of reactants in multicomponent mixtures with parts-per-million resolution. Online NMR spectroscopy can meet these demands when flow probes are directly coupled to reactors, since this method features a high linearity between absolute signal area and sample concentration, which makes it an absolute analytical comparison method being independent on the matrix. Due to improved magnet design and field shimming strategies portable and robust instruments have been introduced to the market by several manufacturers during the last few years. First studies with this technology showed promising results to monitor chemical reaction in the laboratory. Within the project CONSENS, the continuous production of high-value products in small production scale is advanced by introducing MR-NMR spectroscopy. CONSENS is a research and innovation project on integrated control and sensing for sustainable operation of flexible intensified processes. This poster will present the first steps of the process integration of a benchtop NMR instrument for a lithiation process and outlines further fields of activity and potential challenges. Hereby, the following issues are going to be addressed: explosion-proof housing for the spectrometer, automation of signal processing (data pretreatment, evaluation and communication to the control system), flow cells and measuring conditions. Additionally, the first results of the lithiation reaction in lab scale regarding the pure components and reaction mixtures are going to be discussed. T2 - Pro2NMR Autum School CY - Aachen, Germany DA - 08.12.2015 PY - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-351097 AN - OPUS4-35109 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kern, Simon A1 - Zientek, Nicolai A1 - Maiwald, Michael T1 - First steps towards field integration of benchtop NMR spectroscopy for online monitoring and process control N2 - Online monitoring and process control requires fast and noninvasive analytical methods, which are able to monitor the concentration of reactants in multicomponent mixtures with parts-per-million resolution. Online NMR spectroscopy can meet these demands when flow probes are directly coupled to reactors, since this method features a high linearity between absolute signal area and sample concentration, which makes it an absolute analytical comparison method being independent on the matrix. Due to improved magnet design and field shimming strategies portable and robust instruments have been introduced to the market by several manufacturers during the last few years. First studies with this technology showed promising results to monitor chemical reaction in the laboratory. Within the project CONSENS, the continuous production of high-value products in small production scale is advanced by introducing MR-NMR spectroscopy. CONSENS is a research and innovation project on integrated control and sensing for sustainable operation of flexible intensified processes. This poster will present the first steps of the process integration of a benchtop NMR instrument for a lithiation process and outlines further fields of activity and potential challenges. Hereby, the following issues are going to be addressed: explosion-proof housing for the spectrometer, automation of signal processing (data pretreatment, evaluation and communication to the control system), flow cells and measuring conditions. Additionally, the first results of the lithiation reaction in lab scale regarding the pure components and reaction mixtures are going to be discussed. T2 - Small Molecule NMR Conference CY - Baveno, Italy DA - 17.09.2015 PY - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-351085 AN - OPUS4-35108 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -