TY - CONF A1 - Abele, M. A1 - Kern, Simon A1 - Maiwald, Michael A1 - Falkenstein, S. A1 - Meyer, Klas A1 - Friedrich, Y. A1 - Korth, K. T1 - Industrielle Anwendungen der Niederfeld-NMR-Spektroskopie für die Prozess- und Qualitätskontrolle von Silanen N2 - Trialkoxysilane haben sich in den vergangenen Jahren als vielseitig einsetzbare Organosilane erwiesen. Die Einsatzgebiete erstrecken sich vom Witterungsschutz von Bauwerken über haftvermittelnde Eigenschaften in der Glasfaserindustrie, bei Dicht- und Klebstoffen, in Farben und Lacken bis hin zur Modifizierung von polymeren Werkstoffen. Kommerzielle Benchtop-NMR-Spektrometer haben das Potential auch im Bereich der Silanchemie als Online-Methode zur Reaktionsüberwachung und für die Qualitätskontrolle eingesetzt zu werden. Interessante NMR-Kerne für die oben genanntem Produkte sind 1H und 29Si. In einer gemeinsamen Forschungskooperation zwischen EVONIK und BAM wurde anhand verschiedener Fallstudien die Anwendbarkeit der Niederfeld-NMR-Spektroskopie zur chemischen Analyse von Silanen evaluiert. Im Zuge der Fallstudien wurde gezeigt, wie Niederfeld-NMR-Spektroskopie die Möglichkeiten der Konzentrationsmessung auf neue Anwendungsgebiete erweitert, in denen bestehende Technologien wie z. B. NIR, Raman, UV/VIS, etc. mangels Referenzdaten nicht quantitativ eingesetzt werden können. Fallstudie 1: Oligomerisierung Eine Fallstudie setzte dazu an, den Hydrolyse- und Kondensationsverlauf mit einer geeigneten Online-NMR-Analytik zu beobachten, den Reaktionsfortschritt der Hydrolyse und Kondensation auf dieser Basis besser zu verstehen und zu optimieren. Zu diesem Zweck werden durch Zugabe von Wasser zunächst die Alkoxysubstituenten eines Trialkoxysilans hydrolysiert und entsprechende Silanole gebildet. Diese können dann über eine SiOH-Funktion an den zu modifizierenden Werkstoff anbinden und über weitere Silanolgruppen unter Ausbildung von Siloxaneinheiten vernetzen. Fallstudie 2: Spaltung von cyclischen Silanverbindungen In einer weiteren Fallstudie wurde die Kinetik der Aufspaltungen einer cyclischen Silanverbindung untersucht. Die Online-NMR-Analytik kam hierbei sowohl im Labor als auch in der industriellen Produktionsanlage zum Einsatz. Hierfür wurde eine vollständig automatisierte Einhausung verwendet, welche den Einsatz eines kommerziellen NMR-Spektrometers in explosionsgeschützten Bereichen ermöglicht. Fallstudie 3: Qualitätskontrolle für Produktmischungen von Trialkoxysilanen Für Produktmischungen eines Trialkoxysilans und weiteren Bestandteilen wie u. a. org. Stabilisatoren, Organozinnverbindungen, eines aromatischen Amins und org. Peroxide wurden quantitative 1H-Spektren akquiriert und eine automatische Auswertungsmethode basierend auf Indirect Hard Modeling (IHM) entwickelt. Für die Nebenkomponenten, deren Stoffmengenanteile bis zu 3 Mol-% betragen, wurden durch die zugrunde gelegte Methode typischerweise korrekte experimentelle Stoffmengenanteile gefunden, die weniger als 0,2 Mol-% vom Referenzwert abweichen. T2 - 15. Kolloquium Arbeitskreis Prozessanalytik CY - Marl, Germany DA - 25.11.2019 KW - Prozessanalytik KW - Qualitätskontrolle KW - Silane KW - Online-NMR-Spektroskopie KW - Trialkoxysilane PY - 2019 AN - OPUS4-49825 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bornemann-Pfeiffer, Martin A1 - Kern, Simon A1 - Jurtz, N. A1 - Thiede, Tobias A1 - Kraume, M. A1 - Maiwald, Michael T1 - Design and validation of an additively manufactured flowCell–static mixer combination for inline NMR spectroscopy JF - Industrial & Engineering Chemistry Research N2 - There have been an increasing number of publications on flow chemistry applications of compact NMR. Despite this, there is so far no comprehensive workflow for the technical design of flow cells. Here, we present an approach that is suitable for the design of an NMR flow cell with an integrated static mixing unit. This design moves the mixing of reactants to the active NMR detection region within the NMR instrument, presenting a feature that analyses chemical reactions faster (5–120 s region) than other common setups. During the design phase, the targeted mixing homogeneity of the components was evaluated for different types of mixing units based on CFD simulation. Subsequently, the flow cell was additively manufactured from ceramic material and metal tubing. Within the targeted working mass flow range, excellent mixing properties as well as narrow line widths were confirmed in validation experiments, comparable to common glass tubes. KW - Inline NMR Spectroscopy KW - Integrated Processes KW - Reaction Monitoring KW - Process Analytical Technology KW - Flow Chemistry KW - Static Mixing KW - Modular Production PY - 2019 UR - https://pubs.acs.org/doi/abs/10.1021/acs.iecr.9b03746 DO - https://doi.org/10.1021/acs.iecr.9b03746 SN - 0888-5885 SN - 1520-5045 N1 - Geburtsname von Bornemann-Pfeiffer, Martin: Bornemann, M. - Birth name of Bornemann-Pfeiffer, Martin: Bornemann, M. VL - 58 IS - 42 SP - 19562 EP - 19570 PB - American Chemical Society CY - Washington AN - OPUS4-49041 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bornemann-Pfeiffer, Martin A1 - Kern, Simon A1 - Maiwald, Michael A1 - Meyer, Klas T1 - Calibration-Free Chemical Process and Quality Control Units as Enablers for Modular Production JF - Chemie Ingenieur Technik N2 - Modular chemical production is a tangible translation of the digital transformation of the process industry for specialty chemicals. In particular, it enables the speeding-up of process development and thus a quicker time to market by flexibly connecting and orchestrating standardised physical modules and bringing them to life (i.e., parameterising them) with digitally accumulated process knowledge. We focus on the specific challenges of chemical process and quality control, which in its current form is not well suited for modular production and provide possible approaches and examples of the change towards direct analytical methods, analytical model transfer or machine-supported processes. KW - Modular Production KW - Chemical Process Control KW - Process Analytical Technology KW - Digital Transformation KW - Industry 4.0 PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517264 DO - https://doi.org/10.1002/cite.202000150 SN - 1522-2640 VL - 93 IS - 1-2 SP - 62 EP - 70 PB - Wiley-VCH CY - Weinheim AN - OPUS4-51726 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fricke, F. A1 - Brandalero, M. A1 - Liehr, Sascha A1 - Kern, Simon A1 - Meyer, Klas A1 - Kowarik, Stefan A1 - Hierzegger, R. A1 - Westerdick, S. A1 - Maiwald, Michael A1 - Hübner, M. T1 - Artificial Intelligence for Mass Spectrometry and Nuclear Magnetic Resonance Spectroscopy Using a Novel Data Augmentation Method JF - Transactions on Emerging Topics in Computing N2 - Mass Spectrometry (MS) and Nuclear Magnetic Resonance Spectroscopy (NMR) are valuable analytical and quality control methods for most industrial chemical processes as they provide information on the concentrations of individual compounds and by-products. These processes are traditionally carried out manually and by a specialist, which takes a substantial amount of time and prevents their utilization for real-time closed-loop process control. This paper presents recent advances from two projects that use Artificial Neural Networks (ANNs) to address the challenges of automation and performance-efficient realizations of MS and NMR. In the first part, a complete toolchain has been realized to develop simulated spectra and train ANNs to identify compounds in MS. In the second part, a limited number of experimental NMR spectra have been augmented by simulated spectra, to train an ANN with better prediction performance and speed than state-of-the-art analysis. These results suggest that, in the context of the digital transformation of the process industry, we are now on the threshold of a strongly simplified use of MS and MRS and the accompanying data evaluation by machine-supported procedures, and can utilize both methods much wider for reaction and process monitoring or quality control. KW - Industry 4.0 KW - Cyber-Physical Systems KW - Artificial Neural Networks KW - Mass Spectrometry KW - Nuclear Magnetic Resonance Spectroscopy KW - Modular Production PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-539412 UR - https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9638378 DO - https://doi.org/10.1109/TETC.2021.3131371 SN - 2168-6750 VL - 10 IS - 1 SP - 87 EP - 98 PB - IEEE AN - OPUS4-53941 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fricke, F. A1 - Mahmood, S. A1 - Hoffmann, J. A1 - Brandalero, M. A1 - Liehr, Sascha A1 - Kern, Simon A1 - Meyer, Klas A1 - Kowarik, S. A1 - Westerdick, S. A1 - Maiwald, Michael A1 - Hübner, M. T1 - Artificial Intelligence for Mass Spectrometry and Nuclear Magnetic Resonance Spectroscopy JF - 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE) N2 - Mass Spectrometry (MS) and Nuclear Magnetic Resonance Spectroscopy (NMR) are critical components of every industrial chemical process as they provide information on the concentrations of individual compounds and by-products. These processes are carried out manually and by a specialist, which takes a substantial amount of time and prevents their utilization for real-time closed-loop process control. This paper presents recent advances from two projects that use Artificial Neural Networks (ANNs) to address the challenges of automation and performance-efficient realizations of MS and NMR. In the first part, a complete toolchain has been developed to develop simulated spectra and train ANNs to identify compounds in MS. In the second part, a limited number of experimental NMR spectra have been augmented by simulated spectra to train an ANN with better prediction performance and speed than state-of-theart analysis. These results suggest that, in the context of the digital transformation of the process industry, we are now on the threshold of a possible strongly simplified use of MS and MRS and the accompanying data evaluation by machine-supported procedures, and can utilize both methods much wider for reaction and process monitoring or quality control. T2 - 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE) CY - Grenoble, France DA - 01.02.2021 KW - Industry 4.0, KW - Cyber-physical systems KW - Artificial neural networks KW - Mass spectrometry KW - Nuclear magnetic resonance spectroscopy PY - 2021 DO - https://doi.org/10.23919/DATE51398.2021.9473958 SP - 615 EP - 620 PB - IEEE AN - OPUS4-55360 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fricke, F. A1 - Mahmood, S. A1 - Hoffmann, J. A1 - Brandalero, M. A1 - Liehr, Sascha A1 - Kern, Simon A1 - Meyer, Klas A1 - Kowarik, Stefan A1 - Westerdicky, S. A1 - Maiwald, Michael A1 - Hübner, M. T1 - Artificial Intelligence for Mass Spectrometry and Nuclear Magnetic Resonance Spectroscopy T2 - Proceedings of the 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE) N2 - Mass Spectrometry (MS) and Nuclear Magnetic Resonance Spectroscopy (NMR) are critical components of every industrial chemical process as they provide information on the concentrations of individual compounds and by-products. These processes are carried out manually and by a specialist, which takes a substantial amount of time and prevents their utilization for real-time closed-loop process control. This paper presents recent advances from two projects that use Artificial Neural Networks (ANNs) to address the challenges of automation and performance-efficient realizations of MS and NMR. In the first part, a complete toolchain has been developed to develop simulated spectra and train ANNs to identify compounds in MS. In the second part, a limited number of experimental NMR spectra have been augmented by simulated spectra to train an ANN with better prediction performance and speed than state-of-theart analysis. These results suggest that, in the context of the digital transformation of the process industry, we are now on the threshold of a possible strongly simplified use of MS and MRS and the accompanying data evaluation by machine-supported procedures, and can utilize both methods much wider for reaction and process monitoring or quality control. T2 - 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE) CY - Online meeting DA - 01.02.2021 KW - Industry 4.0 KW - Cyber-Physical Systems KW - Artificial Neural Networks KW - Mass Spectrometry KW - Nuclear Magnetic Resonance Spectroscopy PY - 2021 UR - www.date-conference.com SN - 978-3-9819263-5-4 SP - 615 EP - 620 PB - Research Publishing AN - OPUS4-52180 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gottu Mukkula, A. R. A1 - Engell, S. A1 - Kern, Simon A1 - Guhl, Svetlana A1 - Meyer, Klas A1 - Maiwald, Michael T1 - PAT-basierte iterative Optimierung der Fahrweise eines kontinuierlichen organischen Syntheseprozesses T2 - Chemie Ingenieur Technik N2 - Im Zuge der Digitalisierung der Prozessindustrie werden zunehmend modellbasiere Echtzeitoptimierungsverfahren eingesetzt, sog. „Advanced Process Control“. Mithilfe der sogenannten Modifier-Adaptation ist eine iterative Betriebspunktoptimierung auch mit ungenauen Modellen möglich, sofern zuverlässige Prozessdaten zur Verfügung stehen. Am Beispiel eines smarten Online-NMR-Sensors, der in einem EU-Projekt von der BAM entwickelt wurde, konnte das Konzept in einer modularen Produktionsanlage zur Herstellung eines pharmazeutischen Wirkstoffs erfolgreich getestet werden. T2 - ProcessNet-Jahrestagung und 33. DECHEMA-Jahrestagung der Biotechnologen CY - Aachen, Germany DA - 10.09.2018 KW - Prozessanalytik KW - Echtzeitoptimierungsverfahren KW - Modifier-Adaptation KW - Prozess-Steuerung KW - Betriebspunktoptimierung KW - CONSENS PY - 2018 UR - https://onlinelibrary.wiley.com/doi/abs/10.1002/cite.201855233 DO - https://doi.org/10.1002/cite.201855233 SN - 0009-286X VL - 90 SP - 1237 EP - 1237 PB - Wiley-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-45902 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gottu Mukkula, A. R. A1 - Kern, Simon A1 - Salge, M. A1 - Holtkamp, M. A1 - Guhl, Svetlana A1 - Fleischer, C. A1 - Meyer, Klas A1 - Remelhe, M. A1 - Maiwald, Michael A1 - Engell, S. T1 - An Application of Modifier Adaptation with Quadratic Approximation on a Pilot Scale Plant in Industrial Environment JF - IFAC-PapersOnLine N2 - The goal of this work is to identify the optimal operating input for a lithiation reaction that is performed in a highly innovative pilot scale continuous flow chemical plant in an industrial environment, taking into account the process and safety constraints. The main challenge is to identify the optimum operation in the absence of information about the reaction mechanism and the reaction kinetics. We employ an iterative real-time optimization scheme called modifier adaptation with quadratic approximation (MAWQA) to identify the plant optimum in the presence of plant-model mismatch and measurement noise. A novel NMR PAT-sensor is used to measure the concentration of the reactants and of the product at the reactor outlet. The experiment results demonstrate the capabilities of the iterative optimization using the MAWQA algorithm in driving a complex real plant to an economically optimal operating point in the presence of plant-model mismatch and of process and measurement uncertainties. KW - Process Analytical Technology KW - Online NMR Spectroscopy KW - Process Industry KW - Iterative real-time optimization KW - Modifier adaptation KW - Plant-model mismatch KW - Reactor control KW - CONSENS PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-524531 DO - https://doi.org/10.1016/j.ifacol.2020.12.685 SN - 1522-2640 VL - 53 IS - 2 SP - 11773 EP - 11779 PB - Elsevier CY - Amsterdam AN - OPUS4-52453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Guhl, Svetlana A1 - Kern, Simon A1 - Meyer, Klas A1 - Wander, Lukas A1 - Bornemann-Pfeiffer, Martin A1 - Maiwald, Michael T1 - Produzieren Sie schon oder kalibrieren Sie noch? – Online-NMR-Spektrometer als Smarte Feldgeräte T2 - Chemie Ingenieur Technik N2 - Der Vortrag zeigt allgemeine Anforderungen an "smarte Feldgeräte" und deren Entwicklung in den vergangenen Jahren. Am Beispiel eines smarten Online-NMR-Sensors, der in einem EU-Projekt von der BAM entwickelt wurde, wird die Umsetzung der Anforderung aufgezeigt. Schließlich werden weitere Technologieanforderungen und Lösungsansätze vorgestellt. T2 - ProcessNet-Jahrestagung und 33. DECHEMA-Jahrestagung der Biotechnologen CY - Aachen, Germany DA - 10.09.2018 KW - Prozessanalytik KW - Prozessindustrie KW - Online-NMR-Spektroskopie KW - Datenkonzepte KW - Datenanalyse KW - CONSENS PY - 2018 UR - https://onlinelibrary.wiley.com/doi/abs/10.1002/cite.201855229 DO - https://doi.org/10.1002/cite.201855229 SN - 0009-286X N1 - Geburtsname von Bornemann-Pfeiffer, Martin: Bornemann, M. - Birth name of Bornemann-Pfeiffer, Martin: Bornemann, M. VL - 90 IS - 9 SP - 1236 EP - 1236 PB - Wiley-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-45901 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kern, Simon A1 - Wander, Lukas A1 - Bornemann-Pfeiffer, Martin A1 - Guhl, Svetlana A1 - Meyer, Klas A1 - Maiwald, Michael T1 - Novel Flow Cell Designs for Process Monitoring with Compact NMR Spectroscopy N2 - Compact nuclear magnetic resonance (NMR) instruments make NMR spectroscopy and relaxometry accessible in industrial and harsh environments for reaction characterization and process control. Robust field integration of NMR systems have to face explosion protection or integration into process control systems with short set-up times. This paves the way for industrial automation in real process environments. The design of failsafe, temperature and pressure resistant flow through cells along with their NMR-specific requirements is an essential cornerstone to enter industrial production plants and fulfill explosion safety requirements. Additionally, if fast reactions are monitored, suitable mixing devices need to be placed in close vicinity to the measuring volume to mix the reactants properly. NMR-specific requirements aim at full quantitative pre-magnetization and acquisition with maximum sensitivity while reducing sample transfer times and dwell-times. All parameters are individually dependent on the applied NMR instrument. Luckily, an increasing number of applications are reported together with an increasing variety of commercial equipment. However, these contributions have to be reviewed thoroughly. The performance of sample flow cells commonly used in online analytics and especially for low-field NMR spectroscopy was experimentally and theoretically investigated by 1H-NMR experiments and numerical simulations. Especially, the applicability of 3D printed zirconium dioxide for innovative flow cell designs was of interest. Here, we demonstrate and discuss an automated test method to determine the critical parameters of flow through cells for quantitative online NMR spectroscopy. The setup is based on randomized setpoints of flow rates in order to reduce temperature related effects. Five flow cells and tubing were assessed and compared for high-field as well as low-field NMR spectrometers. T2 - Practical Applications of NMR in Industry Conference ​(PANIC) 2018 CY - La Jolla, California, USA DA - 04.03.2018 KW - Process Monitoring KW - Process Control KW - Flow Cell KW - Online NMR Spectroscopy KW - Additive Manufacturing KW - CONSENS PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-444364 N1 - Geburtsname von Bornemann-Pfeiffer, Martin: Bornemann, M. - Birth name of Bornemann-Pfeiffer, Martin: Bornemann, M. AN - OPUS4-44436 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -