TY - JOUR A1 - Noack, J. A1 - Emmerling, Franziska A1 - Kirmse, H. A1 - Kemnitz, E. T1 - Sols of nanosized magnesium fluoride: formation and stabilisation of nanoparticles N2 - The formation of magnesium fluoride sols and xerogels according to the fluorolytic sol–gel synthesis based on the reaction of Mg(OMe)2 with non-aqueous HF has been thoroughly investigated by X-ray scattering (WAXS/XRD), TEM, SAXS, DLS and 19F MAS NMR spectroscopy. Mechanistic insights were gained by following the reaction progress and formation of intermediate phases of the fluorination of magnesium alkoxides. For F:Mg ratios of 0.3 and 0.4 the formation of two crystalline phases was observed containing the recently obtained compound [Mg6F2(OCH3)10(CH3OH)14] hexanuclear dicubane units. The stoichiometric reaction yields magnesium fluoride nanoparticles with crystallite sizes below 5 nm, which show broad reflections in the X-ray diffraction pattern. Metal fluoride sols prepared by this way undergo tremendous changes over the first several weeks after synthesis. Immediately after the fluorination, particles of about 120 nm—probably agglomerates—are formed, which break apart in the course of about one month of ageing and low-viscous, transparent sols with particles of about 12 nm are obtained. At the same time structural re-organisation processes within the magnesium fluoride particles are observed by an increase of the (110) reflection in WAXS. KW - Surface modification KW - Colloidal particles KW - Gold nanoparticles KW - Gel synthesis KW - Small-angle scattering KW - Oxide KW - Polyelectrolytes KW - Aggregation KW - Dispersion PY - 2011 U6 - https://doi.org/10.1039/c1jm11943e SN - 0959-9428 SN - 1364-5501 VL - 21 IS - 38 SP - 15015 EP - 15021 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-26183 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - König, R. A1 - Scholz, G. A1 - Veiczi, M. A1 - Jäger, Christian A1 - Troyanov, S.I. A1 - Kemnitz, E. T1 - New crystalline aluminium alkoxide oxide fluorides: evidence of the mechanism of the fluorolytic sol-gel reaction N2 - This study reports three new crystalline aluminum isopropoxide oxide fluorides with molar ratios of Al:F equal to 1:1 and 1:1.25. These are the first three representatives isolated without the incorporation of external donor molecules. Compound 1 Al4F4(µ4-O)(µ-O'Pr)5[H(O'Pr)2] contains a tetranuclear unit consisting of two different five fold coordinated AlFO4-units, with F exclusively in the terminal position. Compound 2, Al4F4(µ4-O)(µ-O'Pr)5[H(O'Pr)2]·Al5F5(µ5-O)(µ-O'Pr)8, contains both a tetranuclear unit (as in 1) and a pentanuclear Al-unit. Al-atoms in the latter are five- and six fold coordinated. Compound 3, Al16F20(µ4-O)4(µ-O'Pr)20·2('PrOH), exhibits a slightly higher fluorination degree and contains an oligomeric chain of four F-linked tetranuclear Al-units. In addition to X-ray structure analysis, compound 1 was characterized by different solid state MAS NMR techniques, including 27Al triple quantum MAS NMR and 1H, 1H→13C CP, 19F and 27Al MAS NMR. On the basis of the collected data, a reliable decomposition of 27Al single pulse MAS NMR spectra and an unambiguous assignment of the resonances to the respective structural AlFO4-units are given. The new crystalline aluminum isopropoxide oxide fluorides are direct evidence of the fluorolytic sol–gel mechanism previously discussed. KW - Aluminium fluorine KW - MAS NMR KW - Qudrupolar nuclei KW - Crystalline aluminium isopropoxide fluoride PY - 2011 U6 - https://doi.org/10.1039/c1dt10514k SN - 1477-9226 SN - 1477-9234 SN - 1364-5447 VL - 40 IS - 34 SP - 8701 EP - 8710 PB - RSC CY - Cambridge AN - OPUS4-26245 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scholz, G. A1 - Krahl, Thoralf A1 - Ahrens, M. A1 - Martineau, C. A1 - Buzaré, J.Y. A1 - Jäger, Christian A1 - Kemnitz, E. T1 - 115In and 19F MAS NMR study of (NH4)3InF6 phases N2 - This study presents for the first time an NMR spectroscopic characterization of the room and high temperature phases of (NH4)3InF6 using 19F and 115In as probe nuclei. The reversible phase transition to the cubic phase at 353 K was followed by MAS NMR in situ. Static NMR experiments of the room temperature phase and MAS NMR experiments of the high temperature phase allowed the determination of the NMR parameters of both nuclei. Finally, the scalar In–F coupling, rarely observed in solid state NMR, is evidenced in both room and high temperature phases of (NH4)3InF6, and measured in the high temperature phase. KW - (NH4)3InF6 KW - 115In and 19F solid state NMR KW - XRD PY - 2011 U6 - https://doi.org/10.1016/j.jfluchem.2011.01.010 SN - 0022-1139 SN - 1873-3328 VL - 132 IS - 4 SP - 244 EP - 249 PB - Elsevier CY - Amsterdam AN - OPUS4-23475 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -