TY - JOUR A1 - Witke, Klaus A1 - Kunze, Ralf A1 - Neubert, Dietmar A1 - Mehner, Hartmut A1 - Feist, M. A1 - Kemnitz, E. T1 - Two oxidation states and four different coordinations of iron in an unusual chloro complex: TG-MS, Raman and Mössbauer spectroscopic investigations of the thermal behaviour N2 - Conventional simultaneous thermal analysis, capillary-coupled TG–MS, in situ and ex situ Raman and Mössbauer spectroscopy, as well as chemical analysis have been used for the investigation of the first decomposition step of the mixed valence chloroferrate (dmpipzH2)6[Fe(II)Cl4]2[Fe(III)Cl4]2[Fe(II)Cl5][Fe(III)Cl6]. Under argon at ca. 200°C, an almost complete reduction proceeds in a solid state reaction forming Fe(II). It is accompanied by the release of HCl and, to a minor degree, carbon containing species. A multi-phase product with at least two chloroferrate species, coke, and C,H,N-containing polymers is formed. Binuclear iron complexes, such as (dmpipzH)2[Fe(II)2Cl6], and small amounts of (dmpipzH)[Fe(III)Cl4] have been proposed to be the major and minor component of the product mixture, respectively. KW - Mixed valence chloroferrate KW - Thermal decomposition KW - Intramolecular reduction PY - 2000 DO - https://doi.org/10.1016/S0040-6031(00)00546-3 SN - 0040-6031 SN - 1872-762X VL - 361 IS - 1-2 SP - 53 EP - 60 PB - Elsevier CY - Amsterdam AN - OPUS4-988 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grohmann, I. A1 - Kemnitz, E. A1 - Lippitz, Andreas A1 - Unger, Wolfgang T1 - Curve Fitting of Cr2p Photoelectron Spectra of Cr2O3 and CrF3 KW - Photoelektronenspektroskopie KW - Kurvenglättung KW - Chrom PY - 1995 SN - 0142-2421 SN - 1096-9918 VL - 23 SP - 887 EP - 891 PB - Wiley CY - Chichester AN - OPUS4-678 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Grohmann, I. A1 - Hess, A. A1 - Kemnitz, E. A1 - Frentrup, W. A1 - Unger, Wolfgang T1 - XANES-Investigations of coprecipitated AIF3/MgF2 phases KW - XANES-Spektrum KW - Kalzienieren KW - Magnesium PY - 1996 SN - 0179-4159 SP - 222 EP - 223 PB - Berliner Elektronenspeicherring-Gesellschaft für Synchrotronstrahlung CY - Berlin AN - OPUS4-682 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mehner, Hartmut A1 - Witke, Klaus A1 - Feist, M. A1 - Troyanov, S.I. A1 - Kemnitz, E. T1 - Halogenometallate von Übergangselementen mit Kationen stickstoffhaltiger heterozyklischer Basen. VII Zwei Oxidationsstufen und vier verschiedene Koordinationen von Eisen in einer Verbindung. Synthese, Kristallstruktur und spektroskopische Charakterisierung von 1,4-Dimethylpiperazinium-Chloroferrat(II, III), (dmpipzH2)6[FeIICl4]2[FeIIICl4]2[FeIICl5] [FeIIICl6] KW - Halogenometallate KW - Spektroskopische Charakterisierung PY - 1999 SN - 0044-2313 SN - 1521-3749 SN - 0372-7874 SN - 0863-1786 SN - 0863-1778 N1 - Sprachen: Deutsch/Englisch - Languages: German/English VL - 625 IS - 1 SP - 141 EP - 146 PB - Wiley-VCH CY - Weinheim AN - OPUS4-738 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ritter, B. A1 - Krahl, T. A1 - Rurack, Knut A1 - Kemnitz, E. T1 - Nanoscale CaF2 doped with Eu3+ and Tb3+ through fluorolytic sol-gel synthesis N2 - In this article, the high potential of the fluorolytic sol–gel process to synthesize nanoscopic rare earth-doped calcium fluoride sols is shown. Through a fluorolytic sol–gel process we manage to achieve spherical monodisperse ~5 nm sized nanoparticles using a simple and reproducible one-pot-wet chemical route at room temperature. The as-synthesized clear sols exhibit an intense red and green luminescence under UV excitation at room temperature. A spectroscopic study of the sols revealed the characteristic transitions 5D0 → 7FJ of Eu3+ and 5D4 → 7FJ of Tb3+, with 5D0 → 7F2 (611 nm) of Eu3+ and 5D4 → 7F4 (581 nm) of Tb3+ as the most prominent transitions. This facile synthetic strategy is also valuable for developing other luminescent nanoparticles. KW - Calciumfluorid KW - Europium KW - Lumineszenz KW - Nanopartikel KW - Sol-Gel-Synthese KW - Terbium PY - 2014 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-320120 DO - https://doi.org/10.1039/c4tc01073f SN - 2050-7526 SN - 2050-7534 VL - 2 IS - 40 SP - 8607 EP - 8613 PB - Royal Soc. of Chemistry CY - Cambridge AN - OPUS4-32012 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kervarec, M.-C. A1 - Kemnitz, E. A1 - Scholz, G. A1 - Rudic, S. A1 - Jäger, Christian A1 - Braun, T. A1 - Michalchuk, Adam A1 - Emmerling, Franziska T1 - A HF Loaded Lewis-Acidic Aluminium Chlorofluoride for Hydrofluorination Reactions N2 - The very strong Lewis acid aluminium chlorofluo-ride (ACF) was loaded with anhydrous HF. The interactionbetween the surface of the catalyst and HF was investigatedusing a variety of characterization methods, which revealed he formation of polyfluorides. Moreover, the reactivity ofthe HF-loaded ACF towards the hydrofluorination of alkyneswas studied. KW - Aluminium KW - HF KW - Hydrofluorination KW - Metal fluorides PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-508360 DO - https://doi.org/10.1002/chem.202001627 VL - 26 SP - 1 PB - Wiley Online Libary AN - OPUS4-50836 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ritter, B. A1 - Haida, P. A1 - Fink, F. A1 - Krahl, T. A1 - Gawlitza, Kornelia A1 - Rurack, Knut A1 - Scholz, G. A1 - Kemnitz, E. T1 - Novel and easy access to highly luminescent Eu and Tb doped ultra-small CaF2, SrF2 and BaF2 nanoparticles – structure and luminescence N2 - A universal fast and easy access at room temperature to transparent sols of nanoscopic Eu3+ and Tb3+ doped CaF2, SrF2 and BaF2 particles via the fluorolytic sol–gel synthesis route is presented. Monodisperse quasi-spherical nanoparticles with sizes of 3–20 nm are obtained with up to 40% rare earth doping showing red or green luminescence. In the beginning luminescence quenching effects are only observed for the highest content, which demonstrates the unique and outstanding properties of these materials. From CaF2:Eu10 via SrF2:Eu10 to BaF2:Eu10 a steady increase of the luminescence intensity and lifetime occurs by a factor of ≈2; the photoluminescence quantum yield increases by 29 to 35% due to the lower phonon energy of the matrix. The fast formation process of the particles within fractions of seconds is clearly visualized by exploiting appropriate luminescence processes during the synthesis. Multiply doped particles are also available by this method. Fine tuning of the luminescence properties is achieved by variation of the Ca-to-Sr ratio. Co-doping with Ce3+ and Tb3+ results in a huge increase (>50 times) of the green luminescence intensity due to energy transfer Ce3+ → Tb3+. In this case, the luminescence intensity is higher for CaF2 than for SrF2, due to a lower spatial distance of the rare earth ions. KW - Luminescence materials KW - Alkaline earth metal fluorides KW - Fluorolytic sol–gel synthesis PY - 2017 DO - https://doi.org/10.1039/C6DT04711D VL - 46 IS - 9 SP - 2925 EP - 2936 PB - Royal Society of Chemistry AN - OPUS4-39286 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krahl, T. A1 - Beer, F. A1 - Relling, A. A1 - Gawlitza, Kornelia A1 - Rurack, Knut A1 - Kemnitz, E. T1 - Toward Luminescent Composites by Phase Transfer of SrF2 :Eu3+ Nanoparticles Capped with Hydrophobic Antenna Ligands N2 - Transparent dispersions of hydrophobic SrF2 :Eu3+ nanoparticles in cyclohexane with up to 20% europium were obtained by fluorolytic sol-gel synthesis followed by Phase transfer into cyclohexane through capping with sodium dodecylbenzenesulfonate (SDBS). The particles were characterized by TEM, XRD and DLS as spherical objects with a diameter between 6 and 11 nm in dry state. 1H-13CP MAS NMR experiments revealed the binding of the anionic sulfonate head group to the particle surface. The particles show bright red luminescence upon excitation of the aromatic capping agents, acting as antennas for an Energy transfer from the benzenesulfonate unit to the Eu3+ centers in the particles. This synthesis method overcomes the current obstacle of the fluorolytic sol-gel synthesis that transparent dispersions can be obtained directly only in hydrophilic solvents. To demonstrate the potential of such hydrophobized alkaline-earth fluoride particles, transparent luminescent organic-inorganic composites with 10% SrF2 :Eu3+ embedded into polyTEGDMA, polyBMA, poly-BDDMA and polyD3MA, respectively, were prepared, endowing the polymers with the luminescence features of the nanoparticles. KW - Nanoparticles KW - Fluorides KW - Sol-gel process KW - Organic-inorganic hybrid composites PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-508668 DO - https://doi.org/10.1002/cnma.202000058 SP - 1 EP - 11 PB - Wiley AN - OPUS4-50866 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yusenko, Kirill A1 - Kabelitz, Anke A1 - Schokel, Alexander A1 - Wagner, Ralf A1 - Prinz, Carsten A1 - Kemnitz, E A1 - Emmerling, Franziska A1 - Krahl, Thoralf A1 - de Oliveira Guilherme Buzanich, Ana T1 - Local Structure of Europium-Doped Luminescent Strontium Fluoride Nanoparticles: Comparative X-ray Absorption Spectroscopy and Diffraction Study N2 - Rare-earth based luminescent materials are key functional components for the rational design of light-conversion smart devices. Stable Eu3+-doped strontium fluoride (SrF2) nanoparticles were prepared at room temperature in ethylene glycol. Their luminescence depends on the Eu content and changes after heat treatment. The crystallinity of heat-treated material increases in comparison with as-synthesized samples. Particles were investigated in solution using X-ray diffraction, small-angle X-ray scattering, and X-ray spectroscopy. After heat treatment, the size of the disordered nanoparticles increases together with a change of their local structure. Interstitial fluoride ions can be localized near Eu3+ ions. Therefore, non-radiative relaxation from other mechanisms is decreased. Knowledge about the cation distribution is key information for understanding the luminescence properties of any material. KW - SrF2 KW - EXAFS KW - Eu PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-540094 DO - https://doi.org/10.1002/cnma.202100281 VL - 7 IS - 11 SP - 1221 EP - 1229 PB - Wiley Online Library AN - OPUS4-54009 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Al-Terkawi, Abdal-Azim A1 - Scholz, G. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Reinsch, Stefan A1 - Kemnitz, E. A1 - Emmerling, Franziska T1 - Ca- and Sr- tetrafluoroisophthalates: mechanochemical synthesis, characterization, and ab initio structure determination N2 - New fluorinated coordination polymers were prepared mechanochemically by milling the alkaline earth metal hydroxides MII(OH)2·xH2O (MII: Ca, Sr) with tetrafluoroisophthalic acid (H2mBDC-F4). The structures of [{Ca(mBDC-F4)(H2O)2}·H2O] and [{Sr(mBDC-F4)(H2O)2}·H2O] were determined based on ab initio calculations and their powder X-ray diffraction (PXRD) data. The compounds are isomorphous and crystallize in the orthorhombic space group P212121. The determined structures were validated by using extended X-ray absorption (EXAFS) data. The new materials were thoroughly characterized using elemental analysis, thermal analysis, magic angle spinning NMR, and attenuated total reflection-infrared spectroscopy. Further characterization methods such as BET, dynamic vapor sorption, and scanning electron microscopy imaging were also used. Our investigations indicate that mechanochemistry is an efficient method for preparing such materials. KW - Mechanochemistry KW - In situ KW - XRD KW - Coordination polymers PY - 2017 UR - http://pubs.rsc.org/-/content/articlehtml/2017/dt/c7dt00734e DO - https://doi.org/10.1039/c7dt00734e VL - 46 IS - 18 SP - 6003 EP - 6012 AN - OPUS4-41516 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Al-Terkawi, Abdal-Azim A1 - Scholz, G. A1 - Prinz, Carsten A1 - Zimathies, Annett A1 - Emmerling, Franziska A1 - Kemnitz, E. T1 - Hydrated and dehydrated Ca-coordination polymers based on benzene-dicarboxylates: mechanochemical synthesis, structure refinement, and spectroscopic characterization N2 - A series of Ca-based coordination polymers were prepared mechanochemically by milling Ca(OH)2 with phthalic acid (H2oBDC), isophthalic acid (H2mBDC), and terephthalic acid (H2pBDC). The hydrated compounds [Ca(oBDC)(H2O)], [Ca(mBDC)(H2O)3.4], and [Ca(pBDC)(H2O)3] were prepared for the first time via mechanochemical routes. The refined structures were validated by extended X-ray absorption data. The new dehydrated compound [Ca(oBDC)] (1-H2O), obtained after the thermal post-treatment of 1 in a reversible phase transition process, was determined ab initio based on the powder X-ray diffraction (PXRD) data. The materials were thoroughly characterized using elemental analysis, thermal analysis, and spectroscopic methods: magic-angle spinning NMR and attenuated total reflection-infrared spectroscopy. The specific surface areas and sorption properties of the hydrated and dehydrated samples were determined using the isotherms of gas sorption and dynamic vapor sorption measurements. KW - Mechanochemistry KW - XRD PY - 2018 UR - http://pubs.rsc.org/en/content/articlehtml/2017/ce/c7ce01906h DO - https://doi.org/10.1039/C7CE01906H VL - 20 SP - 946 EP - 961 PB - Royal Society of Chemistry AN - OPUS4-44440 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zänker, Steffen A1 - Scholz, Gudrun A1 - Krahl, Thoralf A1 - Prinz, Carsten A1 - Emmerling, Franziska A1 - Kemnitz, E. T1 - Luminescent properties of Eu3+/Tb3+ doped fluorine containing coordination polymers N2 - Lanthanides doped coordination polymers (CPs) with different binding motifs were synthesized to investigate the influence of the different fluorine positions in the structure on the decay time τ of the excited states. Fluorine can be integrated into the network mechanochemically via a fluorinated organic linker, here barium tetrafluoroterephthalate Ba(p-BDC-F4)2 or directly via a metal-fluorine bond (barium terephthalate fluoride BaF(p-BDC)0.5). The CP with a metal-fluorine bond shows the highest lifetime of the excited states of lanthanides (Eu3+, Tb3+ or Eu3+& Tb3+). The excitation of the lanthanides can be performed directly via the excitation wavelength typical for lanthanides and via the excitation wavelength of the linker. This enabled the simultaneous excitation of Eu3+ and Tb3+ in one CP. In the emission spectra (λem = 393 nm) of the mixed doped CPs (Eu3+ and Tb3+) the bands of both lanthanides can be observed. The integration into the crystal lattice and the homogeneous distribution of the lanthanides in the CPs is shown by X-ray diffraction, TEM, STEM-EDS measurements and the long decay times. KW - Alkaline earth metal coordination polymers KW - Fluorine coordination polymers KW - Lanthanides doped coordination polymers KW - Luminescence PY - 2021 DO - https://doi.org/10.1016/j.solidstatesciences.2021.106614 VL - 117 SP - 106614 PB - Elsevier Masson SAS AN - OPUS4-52559 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hemmann, Felix A1 - Agirrezabal-Telleria, Iker A1 - Jäger, Christian A1 - Kemnitz, E. T1 - Quantification of acidic sites of nanoscopic hydroxylated magnesium fluorides by FTIR and 15N MAS NMR spectroscopy N2 - Lewis and Brønsted sites were quantified in a series of weak acidic hydroxylated magnesium fluorides by Fourier transform infrared spectroscopy (FTIR) and solid state nuclear magnetic resonance spectroscopy (NMR) with pyridine as probe molecule. Molar extinction coefficients, which are necessary for quantitative FTIR measurements, were calculated by an easy approach. It utilizes the fact that both signals, used for the quantification by FTIR, are caused by the same deformation vibration mode of pyridine. Comparison of quantitative FTIR experiments and quantification by NMR shows that concentrations of acidic sites determined by FTIR spectroscopy have to be interpreted with caution. Furthermore, it is shown that the transfer of molar extinction coefficients from one catalyst to another may lead to wrong results. Molar extinction coefficients and concentrations of acidic sites determined by FTIR spectroscopy are affected by grinding and probably the particle size of the sample. High temperature during FTIR experiments has further impact on the quantification results. KW - Acidity KW - Fluoride catalyst KW - Infrared spectroscopy KW - Adsorption of pyridine KW - Molar extinction coefficient determination PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-351448 DO - https://doi.org/10.1039/C5RA15116C SN - 2046-2069 VL - 5 IS - 109 SP - 89659 EP - 89668 PB - RSC Publishing CY - London AN - OPUS4-35144 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Agirrezabal-Telleria, Iker A1 - Guo, Y. A1 - Hemmann, Felix A1 - Arias, P. L. A1 - Kemnitz, E. T1 - Dehydration of xylose and glucose to furan derivatives using bifunctional partially hydroxylated MgF2 catalysts and N2-stripping N2 - The current furfural production yield is low due to the use of non-selective homogeneous catalysts and expensive separation. In this work, partially hydroxylated MgF2 catalysts, synthesized using different water contents, were screened during xylose dehydration in water–toluene at 160 °C. The different Lewis/Brønsted ratios on the MgF2 catalysts showed that under-coordinated Mg can isomerize xylose to xylulose, whilst the surface OH-groups were responsible for the dehydration reactions. The presence of glucose as a co-carbohydrate reduced the furfural selectivity from 86 to 81%, whilst it also led to high 5-hydroxymethylfurfural selectivity. The tests catalyzed by MgF2 in combination with simultaneous N2-stripping showed that a furfural selectivity of 87% could be achieved using low xylose loadings. Moreover, the catalysts regenerated by H2O2 showed high activity during the dehydration tests in water–toluene at 160 °C. KW - Bifunctional MgF2 KW - Lewis/Bronsted KW - Carbohydrates KW - Furan derivatives KW - N2-stripping PY - 2014 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-305441 DO - https://doi.org/10.1039/c4cy00129j SN - 2044-4753 SN - 2044-4761 VL - 4 IS - 5 SP - 1357 EP - 1368 PB - RSC Publ. CY - Cambridge AN - OPUS4-30544 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hemmann, Felix A1 - Jäger, Christian A1 - Kemnitz, E. T1 - Comparison of acidic site quantification methods for a series of nanoscopic aluminium hydroxide fluorides N2 - Quantitative determination of acidic surface sites is highly important for the characterization of solid acids because the activity of a catalyst is often related to the concentration of these sites. A recently developed method using 15N Nuclear Magnetic Resonance spectroscopy (NMR) for the quantification of acidic Lewis and Brønsted sites has been tested for a series of nanoscopic aluminum hydroxide fluorides. Comparison with other methods for the quantitative determination of acidic sites shows that this 15N NMR quantification method is a promising technique for the comprehensive investigation of acidic sites. Three different acidic sites, one Brønsted and two Lewis sites, can be distinguished by their 15N chemical shifts of pyridine and simultaneously quantified under conditions corresponding to catalytic reaction conditions. Determination of the individual concentrations of acidic sites allows further insight into the catalytic process. It was found that the concentration of Brønsted sites correlates with catalyzed conversion of citronellal to isopulegol in the investigated series of catalysts. Additionally, investigations indicate that one of the Lewis sites become blocked during the reaction of citronellal. KW - Solid acids KW - TOF KW - NH3-TPD KW - Progressive catalyst poisoning KW - FTIR KW - Quantitative NMR KW - Solid state NMR PY - 2014 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-323280 DO - https://doi.org/10.1039/c4ra09477h SN - 2046-2069 VL - 4 IS - 100 SP - 56900 EP - 56909 PB - RSC Publishing CY - London AN - OPUS4-32328 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Anja A1 - Krahl, T. A1 - Radnik, Jörg A1 - Wagner, Andreas A1 - Werner, W. S. M. A1 - Ritter, B. A1 - Kemnitz, E. A1 - Unger, Wolfgang T1 - Chemical in-depth analysis of (Ca/Sr)F2 core–shell like nanoparticles by X-ray photoelectron spectroscopy with tunable excitation energy N2 - The fluorolytic sol–gel synthesis is applied with the intention to obtain two different types of core–shell nanoparticles, namely, SrF2–CaF2 and CaF2–SrF2. In two separate fluorination steps for core and shell formation, the corresponding metal lactates are reacted with anhydrous HF in ethylene glycol. Scanning transmission electron microscopy (STEM) and dynamic light scattering (DLS) confirm the formation of particles with mean dimensions between 6.4 and 11.5 nm. The overall chemical composition of the particles during the different reaction steps is monitored by quantitative Al Kα excitation X-ray photoelectron spectroscopy (XPS). Here, the formation of stoichiometric metal fluorides (MF2) is confirmed, both for the core and the final core–shell particles. Furthermore, an in-depth analysis by synchrotron radiation XPS (SR-XPS) with tunable excitation energy is performed to confirm the core–Shell character of the nanoparticles. Additionally, Ca2p/Sr3d XPS intensity ratio in-Depth profiles are simulated using the software Simulation of Electron Spectra for Surface Analysis (SESSA). In principle, core–shell like particle morphologies are formed but without a sharp interface between calcium and strontium containing phases. Surprisingly, the in-depth chemical distribution of the two types of nanoparticles is equal within the error of the experiment. Both comprise a SrF2-rich core domain and CaF2-rich shell domain with an intermixing zone between them. Consequently, the internal morphology of the final nanoparticles seems to be independent from the synthesis chronology. KW - Metal fluorides KW - Sol-gel synthesis KW - Synchrotron radiation KW - X-ray photoelectron spectroscopy PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-522284 DO - https://doi.org/10.1002/sia.6937 SN - 0142-2421 VL - 53 IS - 5 SP - 494 EP - 508 PB - Wiley VCH AN - OPUS4-52228 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -