TY - CONF A1 - Keller, Christian A1 - Herbrich, Uwe T1 - Plastic Instability of Rate-Dependent Materials - Consideration of Isothermal and Adiabatic Conditions in Dynamic Tensile Tests - N2 - During dynamic processes, a certain range of strain rates is often observed along loaded structures and components. For precise numerical simulations, it is necessary to determine rate-dependent properties in dynamic tests and to describe the material behavior correctly within an appropriate domain of strain rates including adiabatic heating effects at higher strain rates, typically higher than 10 1/s. In principle, numerical simulations are compared to experimental results to verify the applied material models. For dynamic tensile tests considering ductile materials and large plastic deformation beyond uniform elongation, it is challenging to obtain comparable results due to plastic instability and necking of the specimen, e.g.. Based on the strain gradient in a general tensile specimen, a theoretical criterion was derived describing the plastic instability in rate-dependent materials under isothermal conditions in. It was applied to different multiplicative and additive constitutive relations and the analytical onset of necking was compared to results from numerical calculations of quasi-static and dynamic tensile tests. The simulations of a sheet-metal specimen with rectangular cross-section were carried out using the Finite Element Method and it was found that the numerical calculated and the theoretical predicted onset of plastic instability agree very good. The analytical criterion for instability holds even for specimens without geometrical or material imperfections and confirms that the onset of plastic instability must be considered a material characteristic. However, real dynamic problems with higher strain rates are not isothermal, the heat generated by plastic work is not dissipated to the surrounding and the temperature of the material increases significantly. Adiabatic heating and thermal softening must be considered within the constitutive relations of rate-dependent materials and the discussion of plastic instability. In this paper, an enhanced and more generalized approach for the description of the condition for stability is discussed and applied to phenomenological as well as more physical constitutive relations from the literature. This allows an individual assessment of the accuracy and verification of rate-dependent material models with respect to plastic instability. T2 - 13th World Congress on Computational Mechanics CY - New York, USA DA - 22.07.2018 KW - Plastic Instability KW - FEM KW - Rate-dependent Materials KW - Dynamic Tensile Test PY - 2018 AN - OPUS4-48923 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Keller, Christian A1 - Herbrich, Uwe A1 - Völzke, Holger T1 - Plastic Instability of Rate-Dependent Materials - A Theoretical Approach in Comparison to FE-Analyses - N2 - The condition for plastic instability is a material characteristic and defines the onset of necking in tensile tests. In large deformation problems of ductile materials it is fundamental to determine the strain at which necking starts as well as the post-necking behaviour in the instability region properly. For verification purposes of material models, usually results of numerical analyses are compared to experimental outcomes. For tensile tests with ductile materials under dynamic loading, it is challenging to obtain comparable experimental and numerical results in terms of the onset of necking and the post-critical deformation behaviour. This paper focuses on the derivation of a theoretical criterion describing the plastic instability in rate-dependent materials based on the time variation of the strain gradient in a tensile specimen under isothermal conditions. We examine the influence of various constitutive equations on the theoretical stability condition predicted by different multiplicative as well as additive approaches. For multiplicative relations, the results indicate that the onset of necking is, in principle, independent of the strain rate, whereas for the considered additive relation, the dynamic necking strain must decrease with increasing strain rate. In conclusion, the theoretical stability condition is related to results from finite element simulations of dynamic tensile tests with various loading rates. It is shown that the simulated and the theoretical predicted onset of plastic instability agree reasonably. T2 - 11th European LS-DYNA Conference CY - Salzburg, Austria DA - 09.05.2017 KW - FEM KW - Plastic Instability KW - Dynamic Tensile Test PY - 2017 AN - OPUS4-40662 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Keller, Christian A1 - Herbrich, Uwe T1 - Plastic Instability of Rate-Dependent Materials - A Theoretical Approach in Comparison to FE-Analyses - T2 - 11th European LS-DYNA Conference (Proceedings) N2 - The condition for plastic instability is a material characteristic and defines the onset of necking in tensile tests. In large deformation problems of ductile materials it is fundamental to determine the strain at which necking starts as well as the post-necking behaviour in the instability region properly. For verification purposes of material models, usually results of numerical analyses are compared to experimental outcomes. For tensile tests with ductile materials under dynamic loading, it is challenging to obtain comparable experimental and numerical results in terms of the onset of necking and the post-critical deformation behaviour. This paper focuses on the derivation of a theoretical criterion describing the plastic instability in rate-dependent materials based on the time variation of the strain gradient in a tensile specimen under isothermal conditions. We examine the influence of various constitutive equations on the theoretical stability condition predicted by different multiplicative as well as additive approaches. For multiplicative relations, the results indicate that the onset of necking is, in principle, independent of the strain rate, whereas for the considered additive relation, the dynamic necking strain must decrease with increasing strain rate. In conclusion, the theoretical stability condition is related to results from finite element simulations of dynamic tensile tests with various loading rates. It is shown that the simulated and the theoretical predicted onset of plastic instability agree reasonably. T2 - 11th European LS-DYNA Conference CY - Salzburg, Austria DA - 09.05.2017 KW - FEM KW - Plastic Instability KW - Dynamic Tensile Test PY - 2017 UR - http://www.dynalook.com/11th-european-ls-dyna-conference/crash-metal-failure/plastic-instability-of-rate-dependent-materials-a-theoretical-approach-in-comparison-to-fe-analyses SP - 1 EP - 10 AN - OPUS4-40660 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -