TY - CONF A1 - Kauss, N. A1 - Rosemann, Paul A1 - Halle, T. T1 - Age-hardening behaviour, microstructure and corrosion resistance of the copper alloyed stainless steel 1.4542 N2 - The copper alloyed stainless steel 1.4542 (X5CrNiCuNb16-4) is used in different areas due to its good mechanical properties and corrosion resistance. Strength and corrosion re-sistance can be adjusted by the heat treatment, which is of importance for the application of this alloy. The mechanical properties (strength and hardness) are attributed to the dispersive precipitation of the copper rich ε–Phase. The additional precipitation of chromium carbides can reduce the corrosion resistance. Different ageing states were produced to investigate the precipitation behaviour with various methods. Furthermore, the influence of cold-rolling on the precipitation behaviour was studied in comparison to a solution annealed state without deformation. The microstructure was studied by SEM and the variations of hardness and magnetic proportion were characterised. The electrochemical potentiodynamic reactivation (EPR) was used to determine the corrosion resistance and detect chromium depletion in all heat-treated states. The results show that a work hardening accelerates the precipitation rate, while ageing at 600 °C reduces the corrosion re-sistance due to chromium depletion. T2 - EUROCORR 2018 CY - Krakow, Poland DA - 09.09.2018 KW - Corrosion KW - Stainless steel KW - Corrosion resistance KW - EPR KW - Corrosion testing KW - Heat treatment KW - ThermoCalc KW - REM KW - Martensitic stainless steels PY - 2018 AN - OPUS4-45955 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kauss, N. A1 - Halle, T. A1 - Rosemann, Paul T1 - Age-hardening behavior, microstructure and corrosion resistance of the copper alloyed stainless steel 1.4542 N2 - The copper alloyed stainless steel 1.4542 (X5CrNiCuNb16-4) is used in different areas due to its good mechanical properties and corrosion resistance. Strength and corrosion resistance can be adjusted by the heat treatment, which is of importance for the application of this alloy. The mechanical properties (strength and hardness) are attributed to the dispersive precipitation of the copper rich ε–Phase. The additional precipitation of chromium carbides can reduce the corrosion resistance. Different ageing states were produced to investigate the precipitation behaviour with various methods. Furthermore, the influence of cold-rolling on the precipitation behaviour was studied in comparison to a solution annealed state without deformation. The microstructure was studied by SEM and the variations of hardness and magnetic proportion were characterised. The electrochemical potentiodynamic reactivation (EPR) was used to determine the corrosion resistance and detect chromium depletion in all heat-treated states. The results show that a work hardening accelerates the precipitation rate, while ageing at 600 °C reduces the corrosion resistance due to chromium depletion. T2 - Materials Science and Engineering 2018 (MSE) CY - Darmstadt, Germany DA - 26.09.2018 KW - Corrosion KW - Corrosion resistance KW - Corrosion testing KW - EPR KW - Heat treatment KW - Martensitic stainless steels KW - REM KW - Stainless steel KW - ThermoCalc PY - 2018 AN - OPUS4-46094 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kauss, N. A1 - Rosemann, Paul A1 - Halle, T. T1 - Age-hardening behaviour, microstructure and corrosion resistance of the copper alloyed stainless steel 1.4542 N2 - The copper alloyed stainless steel 1.4542 (X5CrNiCuNb16-4) is used in different areas due to its good mechanical properties and corrosion resistance. Strength and corrosion resistance can be adjusted by the heat treatment, which is of importance for the application of this alloy. The mechanical properties (strength and hardness) are attributed to the dispersive precipitation of the copper rich ε–Phase. The additional precipitation of chromium carbides can reduce the corrosion resistance. Different ageing states were produced to investigate the precipitation behaviour with various methods. Furthermore, the influence of cold-rolling on the precipitation behaviour was studied in comparison to a solution annealed state without deformation. The microstructure was studied by SEM and the variations of hardness and magnetic proportion were characterised. The electrochemical potentiodynamic reactivation (EPR) was used to determine the corrosion resistance and detect chromium depletion in all heattreated states. The results show that a work hardening accelerates the precipitation rate, while ageing at 600 °C reduces the corrosion resistance due to chromium depletion. T2 - WTK2018 CY - Chemnitz DA - 14.03.2018 KW - Corrosion KW - Corrosion resistance KW - Corrosion testing KW - EPR KW - Heat treatment KW - Stainless steel PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-452482 DO - https://doi.org/10.1088/1757-899X/373/1/012020 SN - 1757-899X SN - 1757-8981 VL - 373 SP - Article 012020, 1 EP - 9 PB - Institute of Physics CY - London AN - OPUS4-45248 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rosemann, Paul A1 - Kauss, N. A1 - Müller, C. A1 - Halle, T. T1 - Einfluss der Abkühlgeschwindigkeit auf die Neigung zur Chromverarmung martensitischer nichtrostender Stähle N2 - Die Legierungselemente (Chrom und Kohlenstoff) und die Wärmebehandlung bestimmen Korrosionsbeständigkeit und Härte martensitischer nichtrostender Stähle. Verschiedene wissenschaftliche Arbeiten haben bereits gezeigt, dass die Korrosionsbeständigkeit sehr stark vom Anteil an Chromkarbiden im Gefüge bestimmt wird. Der kombinierte Einfluss von Kohlenstoffgehalt und der Abkühlgeschwindigkeit beim Härten wurde mit Fokus auf die Korrosionsbeständigkeit bisher nur unzureichend untersucht. Die Literatur liefert außerdem gegensätzliche Aussagen über den Einfluss der Abkühlgeschwindigkeit, was möglicherweise auf unterschiedliche Kohlenstoffgehalte zurückgeführt werden kann. In dieser Arbeit wird daher systematisch untersucht, ab welcher Abkühlgeschwindigkeit es bei den Werkstoffen X20Cr13 und X46Cr13 zu Karbidbildung und Chromverarmung kommt. Die Variation der Abkühlgeschwindigkeit erfolgte für die industriell relevante Härtetemperatur von 1050 °C mit dem Stirnabschreckversuch. In Abhängigkeit von der Abkühlgeschwindigkeit wurden an den Stirnabschreckproben Gefüge, Härte und Korrosionsbeständigkeit (EPR, kritische Lochkorrosionspotentiale) untersucht und die Ergebnisse mit thermodynamischen Berechnungen (ThermoCalc) korreliert. Aus den Ergebnissen wird abgeleitet, unter welchen Bedingungen die Abkühlgeschwindigkeit die Korrosionsbeständigkeit beeinflusst. T2 - 16. Sommerkurs Werkstoffe und Fügen CY - Magdeburg, Germany DA - 08.09.2017 KW - Wärmebehandlung KW - Korrosion KW - Chromverarmung KW - EPR KW - Martensitischer nichtrostender Stahl KW - ThermoCalc KW - Lochkorrosion PY - 2017 SN - 978-3-944722-58-0 DO - https://doi.org/10.24352/UB.OVGU-2017-75 SP - 71 EP - 78 AN - OPUS4-41889 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kauss, N. A1 - Halle, T. A1 - Rosemann, Paul T1 - Alterungsverhalten vom kupferaushärtenden martensitisch nichtrostenden Stahl 1.4542 N2 - Der nichtrostende, aushärtbare Stahl 1.4542 (X5CrNiCuNb16-4) wird aufgrund der guten mechanischen Eigenschaften und der hohen Korrosionsbeständigkeit in einer Vielzahl von technischen Anwendungen eingesetzt. Das Verhältnis zwischen den mechanischen Eigenschaften und der Korrosionsbeständigkeit wird durch eine gezielte Wärmebehandlung eingestellt. Härte und Festigkeit werden durch die Bildung von fein verteilten Kupferausscheidungen bei der Warmauslagerung erreicht. Werden dabei auch Chromkarbide gebildet, reduziert sich gleichzeitig die Korrosionsbeständigkeit. Um den Einfluss der Warmauslagerung auf die Eigenschaften zu charakterisieren, wurden verschiedene Alterungszustände erzeugt und vergleichend untersucht. Dabei wurde außerdem der Einfluss einer starken Kaltumformung auf das Alterungsverhalten und die Korrosionsbeständigkeit untersucht. Zur Charakterisierung der Veränderungen wurden die Gefüge im REM untersucht und der magnetisierbare Anteil sowie die Vickershärte ermittelt. Zum Nachweis korrosionsanfälliger Zustände wurde die elektrochemisch potentiodynamische Reaktivierung (EPR) genutzt. Die Ergebnisse zeigen, dass die Kaltverfestigung die Ausscheidungskinetik beschleunigt und die Korrosionsbeständigkeit durch die Warmauslagerung bei 600 °C deutlich reduziert wird. T2 - 16. Sommerkurs Werkstoffe und Fügen CY - Magdeburg, Germany DA - 08.09.2017 KW - Nichtrostender Stahl KW - Wärmebehandlung KW - Korrosion KW - EPR KW - Kaltverfestigung PY - 2017 SN - 978-3-944722-58-0 DO - https://doi.org/10.24352/UB.OVGU-2017-75 SP - 87 EP - 94 AN - OPUS4-41891 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rosemann, Paul A1 - Müller, C. A1 - Kauss, N. A1 - Halle, T. T1 - Einfluss der Wärmebehandlung auf die Korrosionsbeständigkeit von Schneidwaren N2 - Härte und Korrosionsbeständigkeit sind die wichtigsten Qualitätsmerkmale von Schneidwaren. Diese werden nur durch eine optimal durchgeführte Wärmebehandlung des martensitischen nichtrostenden Stahls 1.4116 (X50CrMoV15) erreicht. In der industriellen Fertigung wird die Korrosionsbeständigkeit von Schneidwaren durch Wechseltauchversuche überprüft, die herstellerübergreifend eine große Schwankung der Korrosionsbeständigkeit belegen. In den letzten Jahren wurden neue elektrochemische Untersuchungsmethoden für die Werkstoffgruppe der martensitischen nichtrostenden Stähle entwickelt, welche die geringe Lochkorrosionsbeständigkeit von Schneidwaren auf das Phänomen der Chromverarmung zurückzuführen. Derzeit wird in der wissenschaftlichen und in der industriellen Gemeinschaft der Schritt des Anlassens als Hauptursache der Chromverarmung angesehen. Bei Schneidwaren sind die Anlasstemperaturen aber zu gering, um die auftretende Chromverarmung zu erklären. Aus diesem Grund wurden drei verschiedene Wärmebehandlungsparameter (Austenitisierungsdauer, Abkühlgeschwindigkeit und Anlasstemperatur) systematische untersucht, um deren Beitrag zur Chromverarmung darzustellen. Dazu wird die Untersuchungsmethode der elektrochemisch potentiodynamischen Reaktivierung (EPR) eingesetzt, die sehr sensibel auf Veränderungen im Gefüge reagiert und den Grad an Chromverarmung ermittelt. Außerdem wurde die KorroPad-Prüfung durchgeführt und kritische Lochkorrosionspotentiale ermittelt, um den Zusammenhang zwischen Chromverarmung und Lochkorrosionsbeständigkeit herzustellen. Die Ergebnisse aller Untersuchungen verdeutlichen wie eng das Prozessfenster ist, in dem Schneidwaren mit hoher Korrosionsbeständigkeit hergestellt werden können. T2 - 72. HärtereiKongress CY - Cologne, Germany DA - 26.10.2016 KW - Schneidwaren KW - Wärmebehandlung KW - nichtrostender Stahl KW - martensitisch KW - Lochkorrosion KW - EPR KW - KorroPad PY - 2017 DO - https://doi.org/10.3139/105.110317 SN - 1867-2493 VL - 72 IS - 2 SP - 87 EP - 98 PB - Carl Hanser CY - München AN - OPUS4-41241 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -