TY - JOUR A1 - Karkhin, Victor A1 - Pittner, Andreas A1 - Schwenk, Christopher A1 - Rethmeier, Michael T1 - Simulation of inverse heat conduction problems in fusion welding with extended analytical heat source models N2 - The paper presents bounded volume heat sources and the corresponding functional-analytical expressions for the temperature field. The power density distributions considered here are normal, exponential and parabolic. The sources model real heat sources like the welding arc, laser beam, electron beam, etc., the convection in the weld pool as well as the latent heat due to fusion and solidification. The parameters of the heat source models are unknown a priori and have to be evaluated by solving an inverse heat conduction problem. The functional-analytical technique for calculating 3D temperature fields in butt welding is developed. The proposed technique makes it possible to reduce considerably the total time for data input and solution. It is demonstrated with an example of laser beam welding of steel plates. KW - Laser beam welding KW - Volume heat source KW - Functional-analytical solution KW - Inverse modelling PY - 2011 U6 - https://doi.org/10.1007/s11706-011-0137-1 SN - 2095-025X SN - 2095-0268 VL - 5 IS - 2 SP - 119 EP - 125 PB - Springer CY - Secaucus, N.J. AN - OPUS4-24164 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pittner, Andreas A1 - Karkhin, Victor A1 - Rethmeier, Michael T1 - Reconstruction of 3D transient temperature field for fusion welding processes on basis of discrete experimental data N2 - This paper presents an approach to reconstruct the three-dimensional transient temperature field for fusion welding processes as input data for computational weld mechanics. The methodology to solve this inverse heat conduction problem fast and automatically focuses on analytical temperature field models for volumetric heat sources and application of global optimisation. The important issue addressed here is the question which experimental data is needed to guarantee a unique reconstruction of the experimental temperature field. Different computational-experimental test cases are executed to determine the influence of various sets of discrete experimental data on the solvability of the optimisation problem. The application of energy distributions utilised for laser beam welding allows reconstructing the temperature field efficiently. Furthermore, the heat input into the workpiece determined by the simulation contributes to the evaluation of the thermal efficiency of the welding process. KW - Welding KW - Temperature KW - Analysis techniques KW - Optimisation KW - Laser beams KW - Hybrid laser arc welding PY - 2015 U6 - https://doi.org/10.1007/s40194-015-0225-4 SN - 0043-2288 SN - 1878-6669 VL - 59 IS - 4 SP - 497 EP - 512 PB - Springer CY - Oxford AN - OPUS4-33730 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Artinov, Antoni A1 - Karkhin, Victor T1 - Геометрические различия между кратером шва и сварочной ванной T1 - Geometric differences between end crater and weld pool N2 - Приведено аналитическое решение задачи теплопроводности после прекращения действия подвижного источника теплоты для различных комбинаций источника и свариваемого тела. Показано, что после выключения источника возможно дополнительное плавление основного металла за счет перегретого жидкого металла сварочной ванны. Например, при лазерной сварке со сквозным проплавлением стальной пластины толщиной 2 мм длина кратера шва может быт на 19% больше установившейся длины сварочной ванны. Установлено, что центр кратера, в котором заканчивается затвердевание жидкого металла, смещен в сторону хвостовой части кратера относительно оси теплового источника в момент прекращения его действия. Скорость и направление кристаллизации металла сварочной ванны и кратера различны. N2 - A functional-analytical solution of the problem of heat conduction after the moment of switch-off of the moving heat source is presented. Different combinations of heat sources and heated bodies are considered. It is demonstrated that an additional melting of the base metal is possible after the switch-off due to the overheated weld pool metal. For example, in laser beam keyhole welding of a 2 mm thick steel plate, the crater can be 19% longer than the weld pool. It is found that the crater centre, where the solidification of the liquid metal ends, is displaced from the heat source axis at the moment of switch-off towards the weld pool tail. The rate and the direction of crystallization of the molten metal in the weld pool and the end crater differ significantly. KW - сварочная ванна KW - кратер шва KW - плавление, KW - кристаллизация, KW - температурное поле KW - функция теплонасыщения KW - Weld pool KW - End crater KW - Melting KW - Solidification KW - Temperature field KW - Heat saturation function PY - 2019 SN - 2071-5234 SP - 19 EP - 23 PB - National Agency for Control and Welding CY - Moscow AN - OPUS4-50289 LA - rus AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Artinov, Antoni A1 - Karkhin, Victor A1 - Bachmann, Marcel A1 - Khomich, Pavel A1 - Rethmeier, Michael T1 - МОДЕЛИРОВАНИЕ ГИДРОДИНАМИЧЕСКИХ И ТЕПЛОВЫХ ПРОЦЕССОВ ПРИ ЛАЗЕРНОЙ СВАРКЕ СО СКВОЗНЫМ ПРОПЛАВЛЕНИЕМ N2 - Разработана модель физических процессов при сварке плавлением на основе концепции эквивалентных источников теплоты. Модель включает в себя две части: термогидродинамику сварочной ванны и теплопроводность свариваемого тела вне ванны. В задаче термогидродинамики учитываются температурные зависимости свойств материала, форма парогазового канала, термокапиллярная и естественная конвекция, фазовые превращения и другие физические явления.Приведено решение задачи термогидродинамики методом конечных элементов на примере сварки стальной пластины толщиной 15 мм со сквозным проплавлением лазерным лучом (по технологии "замочная скважина"). Показано, что термокапиллярная конвекция жидкого металла является основной причиной сложной выпукло-вогнутой формы границы ванны с увеличенными размерами в приповерхностных областях. Получено удовлетворительное совпадение расчетных и экспериментальных размеров сварочной ванны. KW - ЛАЗЕРНАЯ СВАРКА KW - СВАРОЧНАЯ ВАННА KW - ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ KW - ГИДРОДИНАМИКА KW - КОНВЕКЦИЯ KW - ТЕПЛОПРОВОДНОСТЬ KW - ТЕМПЕРАТУРНОЕ ПОЛЕ KW - МЕТОД КОНЕЧНЫХ ЭЛЕМЕНТОВ PY - 2020 SN - 0491-6441 SP - 58 EP - 69 AN - OPUS4-50290 LA - rus AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Karkhin, Victor A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Simulation of solidification during laser welding of thin plates T1 - Моделирование процесса кристаллизации при лазерной сварке пластин малой толщины N2 - It is proposed to model the experimentally observed weld pool boundary with superellipses (Lamé curves) and to find the unknown parameters of the curves using optimization methods. It has been shown experimentally that during laser welding of austenitic stainless steel with a thickness of 2 mm at a speed of 20 mm/s, the rear weld pool part has a shape close to triangular which can be accurately approximated by a superellipse. Analytical dependences of the trajectory and growth rate of the crystal and its cross-sectional area on the geometry of the rear weld pool part are obtained. KW - Laser beam welding KW - Plane crystalization KW - Mathematical modeling KW - Superellipse KW - Thin steel plates PY - 2023 U6 - https://doi.org/10.34641/SP.2023.1061.4.033 VL - 4 SP - 28 EP - 33 AN - OPUS4-59649 LA - rus AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Artinov, Antoni A1 - Karkhin, Victor A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Simulation of solidification during keyhole laser welding of thick plates T1 - Моделирование процесса кристаллизациипри лазерной сварке со сквозным проплавлением пластин большой толщины N2 - A method of solving the thermo-fluid dynamics problem is presented, enabling the prediction of the shape and dimensions of the weld pool during keyhole laser welding of thick plates. It is shown that the rear weld pool boundary can be satisfactorily approximated by a set of superellipses (Lamé curves). The presence of a convex rear weld pool boundary in the mid-plane has been observed experimentally and reproduced numerically. It was shown that in this zone the concentration of liquating impurities increases and the local solidification temperature decreases, contributing to the susceptibility to hot cracking. KW - Laser beam welding KW - Three-dimensional crystallization KW - Mathematical modeling KW - Superellipse KW - Thick steel plates PY - 2024 U6 - https://doi.org/10.34641/SP.2023.1062.5.041 VL - 5 SP - 31 EP - 36 AN - OPUS4-59639 LA - rus AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -