TY - JOUR A1 - Tran, K. V. A1 - Woracek, R. A1 - Kardjilov, N. A1 - Markötter, Henning A1 - Hilger, A. A1 - Kockelmann, W. A1 - Kelleher, J. A1 - Puplampu, S. B. A1 - Penumadu, D. A1 - Tremsin, A. S. A1 - Banhart, J. A1 - Manke, I. T1 - Spectral neutron tomography N2 - Combined three-dimensional (3D) mapping of (micro-)structures with elemental and crystalline phase variations is of significant importance for the characterization of materials. Neutron wavelength selective imaging is a spectral imaging technique that exploits unique contrast differences e.g. for mapping dissimilar elemental, isotope, or phase compositions, and has the particular advantage of being applicable to sample volumes on the meso- and macroscale. While being mostly applied as radiography (2D) so far, we herein report that the extension to tomography allows for the display of the full spectral information for every voxel and in 3D. The development is supported by example data from a continuous as well as a pulsed neutron source. As a practical example, we collected 4D data sets (3D + spectral) of plastically deformed metastable stainless steel and herein demonstrate an improved quantification strategy for crystalline phase fractions. These exemplary results illustrate that localized phase transformations can be quantified even in complex geometries within centimeter-sized samples, and we will discuss the limits and future prospects of the technique that is not limited to crystalline materials. KW - 4D tomographic data KW - Multi-energy CT KW - Spectral CT KW - Phase distribution KW - Full-field phase tomography PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-521668 VL - 9 SP - 132 PB - Elsevier Ltd. AN - OPUS4-52166 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohseninia, A A1 - Eppler, M A1 - Kartouzian, D A1 - Markötter, Henning A1 - Kardjilov, N A1 - Wilhelm, F A1 - Scholta, J A1 - Manke, I T1 - PTFE Content in Catalyst Layers and Microporous Layers: Effect on Performance and Water Distribution in Polymer Electrolyte Membrane Fuel Cells N2 - This work describes the effects of catalyst layers (CLs) consisting of hydrophobic PTFE on the performance and water management of PEM fuel cells. Catalyst inks with various PTFE contents were coated on Nafion membranes and characterized using contact angle measurements, SEX-EDX, and mercury porosimetry. Fuel cell tests and electrochemical impedance spectroscopy (EIS) were conducted under varying operating conditions for the prepared materials. At dry conditions, CLs with 5 wt.% PTFE were advantageous for cell performance due to improved membrane hydration, whereas under humid conditions and high air flow rates CLs with 10 wt.% PTFE improved the performance in high current density region. Higher PTFE contents (⩾20 wt.%) increased the mass transport resistance due to reduced porosity of the CLs structure. Operando neutron radiography was utilized to study the effects of hydrophobicity gradients within CLs and cathode microporous layer (MPLC) on liquid water distribution. More hydrophobic CLs increased the water content in adjacent layers and improved performance, especially at dry conditions. MPLC with higher PTFE contents increased the overall liquid water within the CLs and GDLs and escalated the water transfer to the anode side. Furthermore, the role of back-diffusion transport mechanism on water distribution was identified for the investigated cells. KW - Neutron imaging KW - Polymer Electrolyte Membrane Fuel Cell KW - Catalyst Layer KW - Microporous Layer KW - Water Distribution PY - 2021 U6 - https://doi.org/10.1149/1945-7111/abec53 VL - 168 IS - 3 SP - 034509 PB - IOP Science AN - OPUS4-52402 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Griesche, Axel A1 - Pfretzschner, Beate A1 - Schaupp, Thomas A1 - Kannengießer, Thomas A1 - Kardjilov, N. ED - Somerday, B. P. ED - Sofronis, P. T1 - Measurement of hydrogen distributions in metals by neutron radiography and tomography N2 - Neutron imaging has become a valuable tool for measuring hydrogen distributions qualitatively and quantitatively in metals. Hydrogen mass flow can be measured inside cm thick Steel samples with 10 s temporal resolution. Hydrogen accumulations around craclcs in embrittled iron samples can be visualized three-dimensionally. The gas pressure of hydrogen in crack cavities has been measured to be in the ränge of 5 MPa to 15 MPa. This quality of information allows new insights for the analysis of damage mechanisms on a micrometer scale, e.g., of hydrogen blistering. Further, this method is nondestructive and provides local information in situ and in three dimensions with a spatial resolution of 20 µm - 30 µm. T2 - International Hydrogen Conference 2016 CY - Jackson Lake Lodge, Wyoming, USA DA - 11.09.2017 KW - Hydrogen KW - Neutron imaging KW - Neutron radiography KW - Neutron tomography PY - 2017 SN - 978-0-7918-6138-7 U6 - https://doi.org/10.1115/1.861387_ch46 SP - 416 EP - 422 AN - OPUS4-42505 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Arlt, T. A1 - Kardjilov, N. A1 - Kupsch, Andreas A1 - Manke, I. A1 - Salvemini, F. A1 - Grazzi, F. T1 - Neutronen-Laminografie am Beispiel eines historischen Artefakts T1 - Neutron computed laminography on an ancient metal artifact N2 - Die Computer-gestützte Laminografie (CL) wurde als komplementäre Methode zur Computertomografie für die dreidimensionale Bildgebung von lateral ausgedehnten Objekten entwickelt. Ursprünglich für medizinische Zwecke verwendet, wurde diese Methode kürzlich als zerstörungsfreie nicht-invasive Methode nicht nur in der Materialforschung, sondern auch mit steigendem Interesse für kunsthandwerkliche und historische Objekte eingesetzt. Hier wird die Computer-gestützten Laminografie mit polychromatischer Neutronenstrahlung an einer historischen Tsuba eingesetzt, einem Stichblatt eines japanischen Schwerts. Eine Analyse der Lötstellen gibt Rückschlüsse auf das Herstellungsverfahren. Zudem wurden unterschiedliche Materialsysteme gefunden, vermutlich um dem Tsuba lokal eine höhere Stabilität zu verleihen. Die Messungen wurden an der Imaging-Beamline CONRAD-2 an der Neutronenquelle BER 2 des Helmholtz-Zentrums Berlins (HZB) durchgeführt. KW - Neutronenlaminographie KW - Computertomographie PY - 2018 U6 - https://doi.org/10.3139/120.111261 SN - 0025-5300 VL - 60 IS - 12 SP - 1209 EP - 1214 PB - Carl Hanser Verlag CY - München AN - OPUS4-46936 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Serrano Munoz, Itziar A1 - Pfretzschner, Beate A1 - Kromm, Arne A1 - Nadammal, Naresh A1 - Kardjilov, N. A1 - Markötter, Henning A1 - Neuwirth, T. A1 - Schulz, M. A1 - Griesche, Axel T1 - High-resolution Bragg-edge neutron radiography detects grain morphology in PBF-LB/M IN718 N2 - One of the main advantages of metal additive manufacturing (MAM) techniques is their ability to produce components with site-specific microstructural features. Nevertheless, microstructural defects and lack of repeatability are still major concerns in MAM. In this study, a laser powder bed fusion (PBF-LB/M) IN718 material, produced using two different scan length vectors, is investigated using Bragg-edge neutron 2D imaging (BENI) combined with electron backscatter diffraction (EBSD) analysis. BENI is able to detect, on a macroscopic scale, process-induced changes in texture in a large field of view covering the entire sample (20×80 mm2). In addition, high-resolution BENI (HR-BENI), with a pixel size of 12.8 µm, provides a micro-scale examination of the local variations of texture and grain morphology, otherwise undistinguishable using the standard resolution. As such, HR-BENI offers a straightforward and detailed way of screening the integrity of MAM parts at cm-length scales. KW - Bragg-edge neutron 2D imaging (BENI) KW - Metal additive manufacturing (MAM) KW - IN718 PBF-LB/M KW - Crystallographic texture control KW - Electron backscatter diffraction (EBSD) PY - 2023 U6 - https://doi.org/10.1016/j.mtla.2023.101827 SN - 2589-1529 VL - 30 SP - 1 EP - 6 PB - Elsevier CY - Amsterdam AN - OPUS4-57819 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tran, K. V. A1 - Woracek, R. A1 - Kardjilov, N. A1 - Markötter, Henning A1 - Abou-Ras, D. A1 - Puplampu, S. A1 - Förster, C. A1 - Penumadu, D. A1 - Dahlberg, C. F. O. A1 - Banhart, J. A1 - Manke, I. T1 - Torsion of a rectangular bar: Complex phase distribution in 304L steel revealed by neutron tomography N2 - Metastable austenitic stainless steel (304L) samples with a rectangular cross-section were plastically deformed in torsion during which they experienced multiaxial stresses that led to a complex martensitic phase distribution owing to the transformation induced plasticity effect. A three-dimensional characterization of the phase distributions in these cm-sized samples was carried out by wavelength-selective neutron tomography. It was found that quantitatively correct results are obtained as long as the samples do not exhibit any considerable preferential grain orientation. Optical microscopy, electron backscatter diffraction, and finite element modeling were used to verify and explain the results obtained by neutron tomography. Altogether, neutron tomography was shown to extend the range of microstructure characterization methods towards the meso- and macroscale. KW - Neutron tomography KW - Phase distribution KW - Rectangular cross-section KW - Torsion KW - Geometrical effect PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-569101 VL - 222 SP - 1 EP - 13 PB - Elsevier Ltd. AN - OPUS4-56910 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jamro, R. A1 - Mente, Tobias A1 - Kardjilov, N. A1 - Markötter, Henning A1 - Al-Falahat, Ala'A. M. A1 - Woracek, R. A1 - Manke, I. A1 - Griesche, Axel T1 - Temperature distribution during welding measured by neutron imaging N2 - This study was carried out to investigate the neutron transmission signal as a function of sample temperature during a welding process. A theoretical description that includes the Debye-Waller factor was used to describe the temperature influence on the neutron crosssections. Neutron imaging using a monochromatic beam helps to observe transmission variations related to the material temperature. In-situ neutron imaging of welding experiments show the distribution of the temperature in bulk steel samples. The performed finite element modelling of expected temperature distributions shows good agreement with the obtained experimental data. KW - Neutron imaging KW - Debye-Waller-Faktor PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-586268 VL - 2605 SP - 1 EP - 10 PB - IOP Publishing Ltd. AN - OPUS4-58626 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Griesche, Axel A1 - Mente, Tobias A1 - Markötter, Henning A1 - Al-Falahat, M. A1 - Kardjilov, N. T1 - Neutron Bragg edge imaging for in situ mapping of crystallographic phase-transformations and of temperature distributions during GTAW of supermartensitic stainless steel N2 - In Neutron-Bragg-Edge Imaging (NBEI) experiments, we studied the phase transition during butt-welding of supermartensitic steel plates. Gas tungsten arc welding (GTAW) was used with a motorized torch allowing for automated weldments. The austenitization in the heat affected zone (HAZ) underneath the welding head could be clearly visualized at λ = 0.39 nm, a wavelength smaller than the Bragg edge wavelengths of both austenite and martensite. Also, the re-transformation into the martensitic phase upon cooling was detected. However, we observed an unexpected additional change in transmission at λ = 0.44 nm that is a wavelength larger than the wavelength of the Bragg edges of both the martensitic and austenitic phases. We attribute this change to the Deybe-Waller-Factor that describes the temperature dependence of coherent scattering at a crystal lattice. The observed two-dimensional attenuation map corresponds well with a temperature distribution modelling by software macros in ANSYS. Here, the absolute temperature values could be achieved by calibrating the modelled attenuation with help of a thermocouple placed at the steel plate. This allows in return for a direct two-dimensional temperature reading based on the Debye-Waller-relation between neutron attenuation and sample temperature. T2 - ITMNR-9 CY - Buenos Aires, Argentina DA - 12.10.2022 KW - Debye-Waller-Faktor PY - 2023 AN - OPUS4-58627 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Trogadas, P. A1 - Cho, J. I. S. A1 - Rasha, L. A1 - Lu, X. A1 - Kardjilov, N. A1 - Markötter, Henning A1 - Manke, I. A1 - Shearing, P. R. A1 - Brett, D. J. L. A1 - Coppens, M. O. T1 - A nature-inspired solution for water management in flow fields for electrochemical devices N2 - A systematic, nature-inspired chemical engineering approach is employed to solve the issue of flooding in electrochemical devices. The mechanism of passive water transport utilized by lizards living in arid environments is leveraged to design flow-fields with a microchannel structure on their surface, through which capillary pressure rapidly removes the water generated in the electrochemical device. This water management strategy is implemented in proton exchange membrane fuel cells (PEMFCs) with a lunginspired flow-field, which ensures uniform distribution of reactants across the catalyst layer. Jointly, this nature-inspired approach results in flood-free, stable operation at 100% RH and a B60% increase in current (B1.9 A cm-2) and peak power density (B650 mW cm−2) compared to current PEMFCs with a flood-prone, serpentine flow-field (B0.8 A cm-2 and 280 mW cm-2, respectively). This significant advance allows for PEMFC operation at fully humidified conditions. KW - Neutron imaging KW - X-ray tomography KW - Fuel cell PY - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-596662 VL - 17 SP - 2007 EP - 2017 PB - Royal Society of Chemistry (RSC) AN - OPUS4-59666 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -