TY - JOUR A1 - Markötter, H. A1 - Manke, I. A1 - Kuhn, R. A1 - Arlt, Tobias A1 - Kardjilov, N. A1 - Hentschel, Manfred P. A1 - Kupsch, Andreas A1 - Lange, Axel A1 - Hartnig, C. A1 - Scholta, J. A1 - Banhart, J. T1 - Neutron tomographic investigations of water distributions in polymer electrolyte membrane fuel cell stacks JF - Journal of power sources N2 - Neutron tomography was applied to study the 3D water distribution in full polymer electrolyte membrane fuel cell (PEMFC) stacks. The water distribution after switch-off of the fuel cell was analyzed over a period of 36 h. We found a slowly increasing water amount in the fuel cell, but only few changes within a time period of 5 h, which is about the time necessary for neutron tomography. In this way, the requirement for successful tomography was obtained. It is demonstrated how the quasi in-situ tomography technique enables us to study the water content in individual flow field channels of three-fold stacks. Flow field as well as stack design issues are addressed by this visualization method showing weak points due to a non-uniform water distribution that can be identified by means of neutron imaging. KW - Radiography KW - Tomography KW - Neutron imaging KW - Polymer electrolyte membrane fuel cell (PEMFC) KW - Manifold stack KW - Water management PY - 2012 DO - https://doi.org/10.1016/j.jpowsour.2012.07.043 SN - 0378-7753 VL - 219 SP - 120 EP - 125 PB - Elsevier CY - Amsterdam [u.a.] AN - OPUS4-26317 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lange, Axel A1 - Kupsch, Andreas A1 - Hentschel, Manfred P. A1 - Manke, I. A1 - Kardjilov, N. A1 - Arlt, Tobias A1 - Grothausmann, R. T1 - Reconstruction of limited computed tomography data of fuel cell components using direct iterative reconstruction of computed tomography trajectories JF - Journal of power sources N2 - CT (computed tomography) reconstructions of fuel cell components of a yet unrivaled spatial resolution and quality are presented. This is achieved by application of the novel DIRECTT (Direct Iterative Reconstruction of Computed Tomography Trajectories) algorithm. We focus on two different key issues which essentially rule the fuel cell's durability on different length scales and physical interactions. On the resolution scale of some 100 µm agglomerations of condensed water in flow-field channels are detected by means of quasi-in situ neutron CT (after operation). Five orders of magnitude below nanometer sized Ru catalyst particles on carbon black support are visualized by electron tomography. Both types of experiments are especially adapted to the type of material involved but they are accompanied by severe deviations from ideal CT measuring conditions, as well. In order to overcome the tremendous reconstruction artifacts of standard algorithms, we employ DIRECTT which is described in detail. Comparisons of DIRECTT reconstructions to the conventional filtered back projection, prove the significant improvements in both experimental methods. KW - PEM fuel cell KW - Neutron computed tomography KW - Electron tomography KW - Reconstruction algrorithm KW - Water management KW - Catalyst PY - 2011 DO - https://doi.org/10.1016/j.jpowsour.2010.10.106 SN - 0378-7753 VL - 196 IS - 12 SP - 5293 EP - 5298 PB - Elsevier CY - Amsterdam [u.a.] AN - OPUS4-23589 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -