TY - JOUR A1 - Markötter, H. A1 - Manke, I. A1 - Kuhn, R. A1 - Arlt, Tobias A1 - Kardjilov, N. A1 - Hentschel, Manfred P. A1 - Kupsch, Andreas A1 - Lange, Axel A1 - Hartnig, C. A1 - Scholta, J. A1 - Banhart, J. T1 - Neutron tomographic investigations of water distributions in polymer electrolyte membrane fuel cell stacks N2 - Neutron tomography was applied to study the 3D water distribution in full polymer electrolyte membrane fuel cell (PEMFC) stacks. The water distribution after switch-off of the fuel cell was analyzed over a period of 36 h. We found a slowly increasing water amount in the fuel cell, but only few changes within a time period of 5 h, which is about the time necessary for neutron tomography. In this way, the requirement for successful tomography was obtained. It is demonstrated how the quasi in-situ tomography technique enables us to study the water content in individual flow field channels of three-fold stacks. Flow field as well as stack design issues are addressed by this visualization method showing weak points due to a non-uniform water distribution that can be identified by means of neutron imaging. KW - Radiography KW - Tomography KW - Neutron imaging KW - Polymer electrolyte membrane fuel cell (PEMFC) KW - Manifold stack KW - Water management PY - 2012 U6 - https://doi.org/10.1016/j.jpowsour.2012.07.043 SN - 0378-7753 VL - 219 SP - 120 EP - 125 PB - Elsevier CY - Amsterdam [u.a.] AN - OPUS4-26317 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kardjilov, N. A1 - Kupsch, Andreas A1 - Hentschel, Manfred P. A1 - Lange, Axel A1 - Manke, I. A1 - Hilger, A. A1 - Strobl, M. A1 - Penumadu, D. A1 - Banhart, J. T1 - Recent developments at the CONRAD instrument at the Helmholtz Centre Berlin T2 - 7th International Topical Meeting on Neutron Radiography (ITMNR-7) CY - Kingston (Ontario), Canada DA - 2012-06-16 PY - 2012 AN - OPUS4-26377 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Williams, S. H. A1 - Hilger, A. A1 - Kardjilov, N. A1 - Manke, I. A1 - Strobl, M. A1 - Douissard, P.A. A1 - Martin, T. A1 - Riesemeier, Heinrich A1 - Banhart, J. T1 - Detection system for microimaging with neutrons N2 - A new high-resolution detector setup for neutron imaging has been developed based on infinity-corrected optics with high light collection, combined with customized mounting hardware. The system can easily be installed, handled and fitted to any existing facility, avoiding the necessity of complex optical systems or further improved electronics (CCD). This is the first time optical magnification higher than 1:1 has been used with scintillator-based neutron detectors, as well as the first implementation of infinity corrected optics for neutron imaging, achieving the smallest yet reported effective pixel size of 3.375 µm. A novel transparent crystal scintillator (GGG crystal) has been implemented with neutrons for the first time to overcome limitations of traditional powder scintillators (Li6/ZnS, Gadox). The standardized procedure for resolution measurements with the Modulation Transfer Function (MTF) is summarized to facilitate comparison between instruments and facilities. Using this new detector setup, a resolution of 14.8 µm with a field of view of 6 mm × 6 mm has been achieved while maintaining reasonable count times. These advances open a wide range of new possible research applications and allow the potential for additional future developments. KW - Instrumentation for neutron sources KW - Neutron radiography KW - Neutron detectors (cold, thermal, fast neutrons) PY - 2012 U6 - https://doi.org/10.1088/1748-0221/7/02/P02014 SN - 1748-0221 VL - 7 IS - P02014 SP - 1 EP - 26 PB - Inst. of Physics Publ. CY - London AN - OPUS4-26433 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -