TY - JOUR A1 - Lange, Axel A1 - Kupsch, Andreas A1 - Hentschel, Manfred P. A1 - Manke, I. A1 - Kardjilov, N. A1 - Arlt, Tobias A1 - Grothausmann, R. T1 - Reconstruction of limited computed tomography data of fuel cell components using direct iterative reconstruction of computed tomography trajectories N2 - CT (computed tomography) reconstructions of fuel cell components of a yet unrivaled spatial resolution and quality are presented. This is achieved by application of the novel DIRECTT (Direct Iterative Reconstruction of Computed Tomography Trajectories) algorithm. We focus on two different key issues which essentially rule the fuel cell's durability on different length scales and physical interactions. On the resolution scale of some 100 µm agglomerations of condensed water in flow-field channels are detected by means of quasi-in situ neutron CT (after operation). Five orders of magnitude below nanometer sized Ru catalyst particles on carbon black support are visualized by electron tomography. Both types of experiments are especially adapted to the type of material involved but they are accompanied by severe deviations from ideal CT measuring conditions, as well. In order to overcome the tremendous reconstruction artifacts of standard algorithms, we employ DIRECTT which is described in detail. Comparisons of DIRECTT reconstructions to the conventional filtered back projection, prove the significant improvements in both experimental methods. KW - PEM fuel cell KW - Neutron computed tomography KW - Electron tomography KW - Reconstruction algrorithm KW - Water management KW - Catalyst PY - 2011 U6 - https://doi.org/10.1016/j.jpowsour.2010.10.106 SN - 0378-7753 VL - 196 IS - 12 SP - 5293 EP - 5298 PB - Elsevier CY - Amsterdam [u.a.] AN - OPUS4-23589 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -