TY - JOUR A1 - Silveira, A. A1 - Kardjilov, N. A1 - Markötter, Henning A1 - Longo, E. A1 - Greving, I. A1 - Lasch, P. A1 - Shahar, R A1 - Zaslansky, P. T1 - Water flow through bone: Neutron tomography reveals differences in water permeability between osteocytic and anosteocytic bone material N2 - Vertebrate bones are made of a nanocomposite consisting of water, mineral and organics. Water helps bone material withstand mechanical stress and participates in sensation of external loads. Water diffusion across vertebrae of medaka (bone material lacking osteocytes) and zebrafish (bone material containing osteocytes) was compared using neutron tomography. Samples were measured both wet and following immersion in deuterated-water (D2O). By quantifying H+ exchange and mutual alignment with X-ray lCT scans, the amount of water expelled from complete vertebra was determined. The findings revealed that anosteocytic bone material is almost twice as amenable to D2O diffusion and H2O exchange, and that unexpectedly, far more water is retained in osteocytic zebrafish bone. Diffusion in osteocytic bones (only 33 % – 39 % water expelled) is therefore restricted as compared to anosteocytic bone (~ 60 % of water expelled), presumably because water flow is confined to the lacunar-canalicular network (LCN) open-pore system. Histology and Raman spectroscopy showed that anosteocytic bone contains less proteoglycans than osteocytic bone. These findings identify a previously unknown functional difference between the two bone materials. Therefore, this study proposes that osteocytic bone retains water, aided by non-collagenous proteins, which contribute to its poroelastic mechano-transduction of water flow confined inside the LCN porosity. KW - Bone porosity KW - Anosteocytic bone KW - Water permeability KW - Neutron tomography KW - Proteoglycans PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-564563 DO - https://doi.org/10.1016/j.matdes.2022.111275 VL - 224 SP - 1 EP - 13 PB - Elsevier Ltd. AN - OPUS4-56456 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Van Tran, K. A1 - Woracek, R. A1 - Kardjilov, N. A1 - Markötter, Henning A1 - Abou-Ras, D. A1 - Puplampu, S. A1 - Förster, C. A1 - Penumadu, D. A1 - Dahlberg, C. F. O. A1 - Banhart, J. A1 - Manke, I. T1 - Torsion of a rectangular bar: Complex phase distribution in 304L steel revealed by neutron tomography N2 - Metastable austenitic stainless steel (304L) samples with a rectangular cross-section were plastically deformed in torsion during which they experienced multiaxial stresses that led to a complex martensitic phase distribution owing to the transformation induced plasticity effect. A three-dimensional characterization of the phase distributions in these cm-sized samples was carried out by wavelength-selective neutron tomography. It was found that quantitatively correct results are obtained as long as the samples do not exhibit any considerable preferential grain orientation. Optical microscopy, electron backscatter diffraction, and finite element modeling were used to verify and explain the results obtained by neutron tomography. Altogether, neutron tomography was shown to extend the range of microstructure characterization methods towards the meso- and macroscale. KW - Neutron tomography KW - Phase distribution KW - Rectangular cross-section KW - Torsion KW - Geometrical effect PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-561649 DO - https://doi.org/10.1016/j.matdes.2022.111037 SN - 0264-1275 VL - 222 SP - 111037 PB - Elsevier Ltd. AN - OPUS4-56164 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tran, K. V. A1 - Woracek, R. A1 - Kardjilov, N. A1 - Markötter, Henning A1 - Abou-Ras, D. A1 - Puplampu, S. A1 - Förster, C. A1 - Penumadu, D. A1 - Dahlberg, C. F. O. A1 - Banhart, J. A1 - Manke, I. T1 - Torsion of a rectangular bar: Complex phase distribution in 304L steel revealed by neutron tomography N2 - Metastable austenitic stainless steel (304L) samples with a rectangular cross-section were plastically deformed in torsion during which they experienced multiaxial stresses that led to a complex martensitic phase distribution owing to the transformation induced plasticity effect. A three-dimensional characterization of the phase distributions in these cm-sized samples was carried out by wavelength-selective neutron tomography. It was found that quantitatively correct results are obtained as long as the samples do not exhibit any considerable preferential grain orientation. Optical microscopy, electron backscatter diffraction, and finite element modeling were used to verify and explain the results obtained by neutron tomography. Altogether, neutron tomography was shown to extend the range of microstructure characterization methods towards the meso- and macroscale. KW - Neutron tomography KW - Phase distribution KW - Rectangular cross-section KW - Torsion KW - Geometrical effect PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-569101 DO - https://doi.org/10.1016/j.matdes.2022.111037 VL - 222 SP - 1 EP - 13 PB - Elsevier Ltd. AN - OPUS4-56910 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kardjilov, N A1 - Manke, I A1 - Hilger, A A1 - Arlt, T A1 - Bradbury, R A1 - Markötter, Henning A1 - Woracek, R A1 - Strobel, M A1 - Treimer, W A1 - Banhart, J T1 - The Neutron Imaging Instrument CONRAD — Post‐Operational Review N2 - The neutron imaging instrument CONRAD was operated as a part of the user program of the research reactor BER‐II at Helmholtz‐Zentrum Berlin (HZB) from 2005 to 2020. The Instrument was designed to use the neutron flux from the cold source of the reactor, transported by a curved neutron guide. The pure cold neutron spectrum provided a great advantage in the use of different neutron optical components such as focusing lenses and guides, solid‐state polarizers, Monochromators and phase gratings. The flexible setup of the instrument allowed for implementation of new methods including wavelength‐selective, dark‐field, phase‐contrast and imaging with polarized neutrons. In summary, these developments helped to attract a large number of scientists and industrial customers, who were introduced to neutron imaging and subsequently contributed to the Expansion of the neutron imaging community. KW - Neutron imaging KW - Neutron scattering KW - Neutron instrument KW - Tomography PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-534190 DO - https://doi.org/10.3390/ jimaging7010011 VL - 7 IS - 11 SP - 7010011 PB - MDPI AN - OPUS4-53419 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jamro, R. A1 - Mente, Tobias A1 - Kardjilov, N. A1 - Markötter, Henning A1 - Al-Falahat, Ala'A. M. A1 - Woracek, R. A1 - Manke, I. A1 - Griesche, Axel T1 - Temperature distribution during welding measured by neutron imaging N2 - This study was carried out to investigate the neutron transmission signal as a function of sample temperature during a welding process. A theoretical description that includes the Debye-Waller factor was used to describe the temperature influence on the neutron crosssections. Neutron imaging using a monochromatic beam helps to observe transmission variations related to the material temperature. In-situ neutron imaging of welding experiments show the distribution of the temperature in bulk steel samples. The performed finite element modelling of expected temperature distributions shows good agreement with the obtained experimental data. KW - Neutron imaging KW - Debye-Waller-Faktor PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-586268 DO - https://doi.org/10.1088/1742-6596/2605/1/012026 VL - 2605 SP - 1 EP - 10 PB - IOP Publishing Ltd. AN - OPUS4-58626 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Al-Falahat, A M A1 - Kardjilov, N A1 - Woracek, R A1 - Boin, M A1 - Markötter, Henning A1 - Kuhn, L T A1 - Makowska, M A1 - Strobl, M A1 - Pfretzschner, B A1 - Banhart, J A1 - Manke, I T1 - Temperature dependence in Bragg edge neutron transmission measurements N2 - A systematic study has been carried out to investigate the neutron transmission signal as a function of sample temperature. In particular, the experimentally determined wavelength-dependent neutron attenuation spectra for a martensitic steel at temperatures ranging from 21 to 700°C are compared with simulated data. A theoretical description that includes the Debye–Waller factor in order to describe the temperature influence on the neutron cross sections was implemented in the nxsPlotter software and used for the simulations. The analysis of the attenuation coefficients at varying temperatures shows that the missing contributions due to elastic and inelastic scattering can be clearly distinguished: while the elastically scattered intensities decrease with higher temperatures, the inelastically scattered intensities increase, and the two can be separated from each other by analysing unique sharp features in the form of Bragg edges. This study presents the first systematic approach to quantify this effect and can serve as a basis , for example, to correct measurements taken during in situ heat treatments, in many cases being a prerequisite for obtaining quantifiable results. KW - Neutron Bragg edge imaging KW - Debye–Waller factor KW - Temperature-dependent neutron transmission KW - Super martensitic stainless steel PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-556896 DO - https://doi.org/10.1107/S1600576722006549 VL - 55 IS - Pt 4 SP - 919 EP - 928 PB - International Union of Crystallography AN - OPUS4-55689 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tran, K. V. A1 - Woracek, R. A1 - Kardjilov, N. A1 - Markötter, Henning A1 - Hilger, A. A1 - Kockelmann, W. A1 - Kelleher, J. A1 - Puplampu, S. B. A1 - Penumadu, D. A1 - Tremsin, A. S. A1 - Banhart, J. A1 - Manke, I. T1 - Spectral neutron tomography N2 - Combined three-dimensional (3D) mapping of (micro-)structures with elemental and crystalline phase variations is of significant importance for the characterization of materials. Neutron wavelength selective imaging is a spectral imaging technique that exploits unique contrast differences e.g. for mapping dissimilar elemental, isotope, or phase compositions, and has the particular advantage of being applicable to sample volumes on the meso- and macroscale. While being mostly applied as radiography (2D) so far, we herein report that the extension to tomography allows for the display of the full spectral information for every voxel and in 3D. The development is supported by example data from a continuous as well as a pulsed neutron source. As a practical example, we collected 4D data sets (3D + spectral) of plastically deformed metastable stainless steel and herein demonstrate an improved quantification strategy for crystalline phase fractions. These exemplary results illustrate that localized phase transformations can be quantified even in complex geometries within centimeter-sized samples, and we will discuss the limits and future prospects of the technique that is not limited to crystalline materials. KW - 4D tomographic data KW - Multi-energy CT KW - Spectral CT KW - Phase distribution KW - Full-field phase tomography PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-521668 DO - https://doi.org/10.1016/j.mtadv.2021.100132 VL - 9 SP - 132 PB - Elsevier Ltd. AN - OPUS4-52166 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohseninia, A A1 - Eppler, M A1 - Kartouzian, D A1 - Markötter, Henning A1 - Kardjilov, N A1 - Wilhelm, F A1 - Scholta, J A1 - Manke, I T1 - PTFE Content in Catalyst Layers and Microporous Layers: Effect on Performance and Water Distribution in Polymer Electrolyte Membrane Fuel Cells N2 - This work describes the effects of catalyst layers (CLs) consisting of hydrophobic PTFE on the performance and water management of PEM fuel cells. Catalyst inks with various PTFE contents were coated on Nafion membranes and characterized using contact angle measurements, SEX-EDX, and mercury porosimetry. Fuel cell tests and electrochemical impedance spectroscopy (EIS) were conducted under varying operating conditions for the prepared materials. At dry conditions, CLs with 5 wt.% PTFE were advantageous for cell performance due to improved membrane hydration, whereas under humid conditions and high air flow rates CLs with 10 wt.% PTFE improved the performance in high current density region. Higher PTFE contents (⩾20 wt.%) increased the mass transport resistance due to reduced porosity of the CLs structure. Operando neutron radiography was utilized to study the effects of hydrophobicity gradients within CLs and cathode microporous layer (MPLC) on liquid water distribution. More hydrophobic CLs increased the water content in adjacent layers and improved performance, especially at dry conditions. MPLC with higher PTFE contents increased the overall liquid water within the CLs and GDLs and escalated the water transfer to the anode side. Furthermore, the role of back-diffusion transport mechanism on water distribution was identified for the investigated cells. KW - Neutron imaging KW - Polymer Electrolyte Membrane Fuel Cell KW - Catalyst Layer KW - Microporous Layer KW - Water Distribution PY - 2021 DO - https://doi.org/10.1149/1945-7111/abec53 VL - 168 IS - 3 SP - 034509 PB - IOP Science AN - OPUS4-52402 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pacheco, V. A1 - Marattukalam, J. J. A1 - Karlsson, D. A1 - Dessieux, L. A1 - Tran, K. V. A1 - Beran, P. A1 - Manke, I. A1 - Kardjilov, N. A1 - Markötter, Henning A1 - Sahlberg, M. A1 - Woracek, R. T1 - On the relationship between laser scan strategy, texture variations and hidden nucleation sites for failure in laser powder-bed fusion N2 - While laser powder-bed fusion has overcome some of the design constraints of conventional manufacturing methods, it requires careful selection of process parameters and scan strategies to obtain favorable properties. Here we show that even simple scan strategies, complex ones being inevitable when printing intricate designs, can inadvertently produce local alterations of the microstructure and preferential grain orientation over small areas – which easily remain unnoticed across the macroscale. We describe how a combined usage of neutron imaging and electron backscatter diffraction can reveal these localized variations and explain their origin within cm-sized parts. We explain the observed contrast variations by linking the neutron images to simulated data, pole figures and EBSD, providing an invaluable reference for future studies and showing that presumably minor changes of the scan strategy can have detrimental effects on the mechanical properties. In-situ tensile tests reveal that fracture occurs in a region that was re-melted during the building process. KW - Laser powder-bed fusion KW - Texture KW - Preferential orientation KW - Diffraction contrast neutron imaging KW - Bragg-edge PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-568054 DO - https://doi.org/10.1016/j.mtla.2022.101614 VL - 26 SP - 1 EP - 9 PB - Elsevier B.V. AN - OPUS4-56805 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Arlt, T. A1 - Kardjilov, N. A1 - Kupsch, Andreas A1 - Manke, I. A1 - Salvemini, F. A1 - Grazzi, F. T1 - Neutronen-Laminografie am Beispiel eines historischen Artefakts T1 - Neutron computed laminography on an ancient metal artifact N2 - Die Computer-gestützte Laminografie (CL) wurde als komplementäre Methode zur Computertomografie für die dreidimensionale Bildgebung von lateral ausgedehnten Objekten entwickelt. Ursprünglich für medizinische Zwecke verwendet, wurde diese Methode kürzlich als zerstörungsfreie nicht-invasive Methode nicht nur in der Materialforschung, sondern auch mit steigendem Interesse für kunsthandwerkliche und historische Objekte eingesetzt. Hier wird die Computer-gestützten Laminografie mit polychromatischer Neutronenstrahlung an einer historischen Tsuba eingesetzt, einem Stichblatt eines japanischen Schwerts. Eine Analyse der Lötstellen gibt Rückschlüsse auf das Herstellungsverfahren. Zudem wurden unterschiedliche Materialsysteme gefunden, vermutlich um dem Tsuba lokal eine höhere Stabilität zu verleihen. Die Messungen wurden an der Imaging-Beamline CONRAD-2 an der Neutronenquelle BER 2 des Helmholtz-Zentrums Berlins (HZB) durchgeführt. KW - Neutronenlaminographie KW - Computertomographie PY - 2018 DO - https://doi.org/10.3139/120.111261 SN - 0025-5300 VL - 60 IS - 12 SP - 1209 EP - 1214 PB - Carl Hanser Verlag CY - München AN - OPUS4-46936 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -