TY - GEN A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Kromm, Arne A1 - Kannengießer, Thomas A1 - Hensel, J. T1 - Fertigungsbedingte Beanspruchungen und Kaltrisssicherheit in generativ gefertigten Bauteilen aus hochfesten Feinkornbaustählen - Kurzdarstellung der Projektergebnisse, FOSTA P1380 N2 - Die Verwendung hochfester Feinkornbaustähle hat für viele Anwendungen des Stahlbaus ein großes Potenzial für gewichtsoptimierte, effiziente Strukturen mit ho-her mechanischer Beanspruchbarkeit. Weitere Zugewinne an Effizienz sind durch generative Fertigungsschritte sowie bionische Bauweisen erzielbar. Hierzu stehen bereits kommerzielle hochfeste drahtförmige Zusatzwerkstoffe für formgebendes MSG-Schweißen zur Verfügung. Dem Einsatz stehen noch fehlende quantitative Aussagen zu den fertigungsbedingten Beanspruchungen und der Bauteilsicherheit während Herstellung und Betrieb im Wege. Dies betrifft insbesondere prozess- sowie materialbedingte Einflüsse und die konstruktive Schrumpfbehinderung verbunden mit der Ausbildung hoher Zugeigenspannungen und damit zusammenhängenden Kaltrissbildung. Hierfür wurden im Projekt detaillierte und anwenderbezogene Kenntnisse zu den komplexen Wechselwirkungen zwischen Schweißprozess und Wärmeführung während der Fertigung, der metallurgischen Vorgänge und insbesondere der vorliegenden konstruktiven Einflüsse auf die entstehenden Eigenspannungen erarbeitet, um ein frühzeitiges Bauteilversagen aufgrund eines hohen fertigungsbedingten Beanspruchungsniveaus bis hin zu einer Rissbildung während der Fertigung sicher zu vermeiden. Gleichzeitig wurden die Einflüsse auf die mechanisch-technologischen Gütewerte systematisch analysiert. Zudem wurden die Auswirkungen trennender Verfahren durch Entfernen der Substratplatte sowie durch die spanende Bearbeitung der Vorformlinge zu Endbauteilgeometrien geklärt, da diese unmittelbar den Eigenspannungszustand beeinflussen und deutlichen Verzug der Bauteile auslösen. Für das generative Schweißen konnten Verarbeitungsempfehlungen sowie Normenvorgaben erarbeitet werden. Dies hilft insbesondere KMU eine wirtschaftliche, beanspruchungsgerechte und risssichere generative Fertigung von Bauteilen aus hochfesten Feinkornbaustählen zu ermöglichen. KW - MAG-Schweißen KW - Additive Fertigung KW - Eigenspannungen KW - Kaltrisssicherheit KW - Hochfester Stahl PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-582198 N1 - Das IGF-Vorhaben IGF-Nr. 21162 BG (P 1380) "Fertigungsbedingte Beanspruchungen und Kaltrisssicherheit in generativ gefertigten Bauteilen aus hochfesten Feinkornbaustählen" der Forschungsvereinigung Stahlanwendung e. V. wurde über die AiF im Rahmen des Programms zur Förderung der Industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert. SP - 1 EP - 2 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-58219 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas T1 - Kurzdarstellung der Projektergebnisse - Einfluss der Wärmeführung auf die Eigenspannungsausbildung und Kaltrisssicherheit in geschweißten Konstruktionen aus hochfesten Feinkornbaustählen - IGF-Vorhaben IGF-Nr. 17267 N (P 922) N2 - Aus wirtschaftlichen, konstruktiven sowie ästhetischen Aspekten werden moderne Stahlbaukonstruktionen immer schlanker und leichter ausgeführt. Dazu werden zunehmend hochfeste Feinkornbaustähle mit Dehngrenzen ≥ 690 MPa eingesetzt, wodurch eine Gewichtsreduzierung von 30 % bis 50 % und eine Kostenersparnis von 5 % bis 15 % erreicht werden kann. Das Potential hochfester Feinkornbaustähle ist unter Beachtung der heutigen Richtlinien und Regelwerke jedoch nicht ohne weiteres nutzbar. Durch das Forschungsvorhaben wurde der Einfluss der Wärmeführung auf die Eigenspannungsausbildung und Kaltrissbildung unter Berücksichtigung realitätsnaher Steifigkeitsbedingungen untersucht. Auf der Grundlage dieser Erkenntnisse wurde ein Beitrag zur Verbesserung der Verarbeitungsrichtlinien erarbeitet, welche dem Verarbeiter eine sichere schweißtechnische Verarbeitung bei verbesserter Ausnutzung der Materialeigenschaften ermöglicht. Vor allem die Tragfähigkeit und die Sicherheit der Schweißverbindung bestimmen die Bemessung der Konstruktion und somit den nachhaltigen und ökonomischen Einsatz dieser Güten. Der Zusammenhang zwischen der Höhe der entstehenden Eigenspannungen und der Wärmeführung in realen Konstruktionen ist zurzeit nur qualitativ überschaubar und führt zu einer eher konservativen Auslegung heutiger Schweißkonstruktionen. Die wirtschaftliche Verarbeitung hochfester Stähle wird neben dem Erreichen anforderungsgerechter mechanischer Eigenschaften im Schweißnahtbereich vor allem durch die Vermeidung von Kaltrissen bestimmt. Die diesbezüglichen Empfehlungen in den geltenden Regelwerken beruhen jedoch vornehmlich auf Erkenntnissen aus Laborschweißungen an Kleinproben unter freier äußerer Schrumpfung. Die Hauptursachen für die Entstehung von Eigenspannungen wie inhomogene, lokale Erwärmung und Abkühlung der schweißnahtnahen Bereiche und insbesondere die konstruktive Schrumpfbehinderung infolge umgebender Montagegruppen werden damit jedoch nicht abgebildet. Der Einfluss der Wärmeführung, insbesondere der lokalen Vorwärmung, auf die Eigenbeanspruchung einer Konstruktion ist derzeit weitgehend unbekannt. Ziel des Forschungsvorhabens war es, den Einfluss der Wärmeführung auf die Eigenspannungsausbildung in geschweißten Konstruktionen zu quantifizieren sowie Aussagen zur Beeinflussung und Absenkung der Eigenspannungen und somit der Gesamteigenbeanspruchung von Schweißkonstruktionen zu erarbeiten. Dazu wurden durch die sukzessive Steigerung des Einspanngrades der Zusammenhang zwischen Wärmeführung und resultierender Eigenspannung unter zusätzlicher Schrumpfbehinderung geklärt. Ferner wurde die Übertragbarkeit der den Regelwerken zugrundeliegenden Kleinprobenergebnisse auf reale Konstruktionen untersucht. Mithilfe systematischer Klein- und Großlastschweißversuche an definiert schrumpfbehinderten Proben konnte der Einfluss der Wärmeführung sowohl auf die lokalen nahtnahen Eigenspannungen als auch globale Eigenbeanspruchungen durch Reaktionsspannungen analysiert werden. Es zeigte sich, dass eine Reduktion der lokalen Eigenspannungen und der Eigenbeanspruchung von geschweißten Konstruktionen durch eine geringere Wärmeeinbringung möglich ist. Eine Absenkung der Zwischenlagentemperatur erwies sich dabei unter anderem als besonders günstig. Damit ist es möglich vorhandene Wärmeführungskonzepte für hochfeste Stähle zu optimieren und dadurch die Kaltrissbildung zu vermeiden. KW - MAG-Schweißen KW - Eigenspannungen KW - Hochfester Stahl KW - Kaltrisssicherheit PY - 2014 SP - 1 EP - 2 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-59256 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Schröpfer, Dirk A1 - Becker, Amadeus A1 - Kannengießer, Thomas T1 - Beanspruchungsgerechte Reparatur von Schweißverbindungen bei der Fertigung von Bauteilen aus hochfesten Feinkornbaustählen N2 - Bei der Montage von Stahlkonstruktionen kommt es trotz anforderungsgerechter schweißtechnischer Fertigung vereinzelt zur Detektion von unzulässigen Unregelmäßigkeiten im Schweißbereich. Die Verarbeitungsregelwerke empfehlen das lokale thermische Ausfugen betroffener Bereiche und erneutes Schweißen, geben aber aufgrund fehlender wissenschaftlich fundierter Untersuchungen kaum Informationen zu adäquaten Reparaturkonzepten. Dies betrifft insbesondere die Berücksichtigung und Optimierung resultierender schweißbedingter Beanspruchungen durch hohe Schrumpfbehinderungen der Ausfugenuten sowie der Gefügedegradation angrenzender Bereiche durch das Ausfugen und erneute Schweißen. Gerade bei hochfesten Stahlgüten ergeben sich dadurch häufig reduzierte mechanische Eigenschaften und zusätzliche schweißbedingte Beanspruchungen sowie erneut auftretende Nahtdefekte. Deshalb wurden für das Forschungsvorhaben systematische bauteilrelevante Untersuchungen der schweißbedingten Beanspruchungen und Gefügeveränderungen reparierter Schweißnähte in Abhängigkeit von der Schrumpfbehinderung und Wärmeführung beim Schweißen und Ausfugen sowie von der Reparaturzyklenanzahl durchgeführt. Die Untersuchungsergebnisse zeigen auf, welche Faktoren sich für eine Beanspruchungsreduzierung auch bei hohen Einspannbedingungen eignen und wie eine Degradation des Gefüges und der Eigenschaften der Schweißnaht sowie wiederholte Schweißnahtdefekte in der Reparaturnaht vermieden werden können. Insbesondere können mittels adaptiver Wärmeführung geringere schweißbedingte Beanspruchungen in den Reparaturschweißnähten bewirkt werden. Bauteilversuche sichern zudem die Übertragbarkeit der Schweißexperimente in die Praxis ab. Aufgrund der Erkenntnisse konnten Empfehlungen für beanspruchungs- und werkstoffgerechte Reparaturkonzepte abgeleitet und ausgesprochen werden. Die Analysen wurden an den hochfesten Stahlgüten S500MLO für den Offshore-Bereich und S960QL für den Mobilkranbau realisiert. Damit wird insbesondere der wirtschaftlichen Fertigung hocheffizienter Konstruktionen für Windenergieanlagen und hochfester Strukturen, die für deren Errichtung notwendig sind, Rechnung getragen. So bieten die Forschungsergebnisse eine wesentliche Grundlage für die Weiterentwicklung entsprechender Normen und Regelwerke. Damit können letztlich Schäden und zumeist teure Nacharbeiten verhindert und eine verbesserte Ausnutzung des hohen Festigkeitspotentials hochfester Stähle erreicht werden. Gerade auch KMU können mit Blick auf die Kosten für Fertigung, Schweißarbeit und Material von den Erkenntnissen beim Einsatz hochfester Stähle, die für eine effiziente Realisierung der Energiewende in Deutschland notwendig sind, profitieren. KW - MAG-Schweißen KW - Hochfester Stahl KW - Reparatur KW - Kaltrisssicherheit KW - Reparaturschweißen KW - Wärmeführung KW - Windenergie PY - 2023 UR - https://matplus.shop/produkt/p-1311-beanspruchungsgerechte-reparatur-von-schweissverbindungen-bei-der-fertigung-von-bauteilen-aus-hochfesten-feinkornbaustaehlen SN - 978-3-96780-146-0 N1 - Schlussbericht vom 18.07.2022 zu dem über die Arbeitsgemeinschaft industrieller Forschungsvereinigungen "Otto von Guericke" (AiF) im Rahmen des Programms zur Förderung der Industriellen Gemeinschaftsforschung und -entwicklung (IGF) vom Bundesministerium für Wirtschaft und Energie (BMWi) aufgrund eines Beschlusses des Deutschen Bundestages geförderten Vorhaben Nr. 20162 N (Berichtszeitraum 01.07.2019 - 28.02.2022) VL - P 1311 SP - 1 EP - 156 PB - Verlag und Vertriebsgesellschaft CY - Düsseldorf AN - OPUS4-59260 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Einfluss der Wärmeführung auf die Eigenschaften und fertigungsbedingten Beanspruchungen additiv geschweißter hochfester Feinkornbaustähle N2 - Hochfeste Feinkornbaustähle verfügen über ein großes Potenzial für gewichtsoptimierte, effiziente Strukturen in vielen modernen Stahlkonstruktion. Weitere Effizienzsteigerungen können durch additives Fertigen sowie bionische Bauweisen erreicht werden. Kommerzielle hochfeste Zusatzwerkstoffe für additives MSG-Schweißen (engl.: Wire Arc Additive Manufacturing, WAAM) sind bereits von den Schweißzusatzherstellern lieferbar. Derzeit ist jedoch eine breite industrielle Anwendung insbesondere für KMU aufgrund fehlender quantitativer Erkenntnisse und Richtlinien bezüglich schweißbedingter Beanspruchungen und Bauteilsicherheit während der Herstellung und des Betriebs stark limitiert. In einem gemeinsamen Forschungsprojekt (FOSTA-P1380/IGF21162BG) der BAM und der TU Chemnitz werden die mit Eigenspannungsausbildung und der Gefahr einer Kaltrissbildung verbundenen prozess- und werkstoffbedingten sowie konstruktiven Einflüsse untersucht. Im Fokus dieser Analysen steht die Bestimmung der Wechselwirkungen zwischen WAAM-Prozessparametern bzw. der Wärmeführung auf das Gefüge und die Eigenspannungen. Hierfür werden Referenzproben als offene Hohlquader mit definierten Abmessungen vollautomatisiert mit einem speziellen, hochfesten WAAM-Massivdraht (Streckgrenze >790 MPa) geschweißt. Die gezielte Einstellung der geometrischen Eigenschaften erfolgt durch Schweißparameter und Nahtaufbau bei ca. 4 kg/h mittlerer Abschmelzleistung. Die Wärmeführung wird innerhalb eines statistischen Versuchsplanes mittels Streckenenergie (200 kJ/m bis 650 kJ/m) und Zwischenlagentemperatur (100 °C bis 300 °C) so variiert, dass die t8/5-Abkühlzeiten dem empfohlenen Verarbeitungsbereich entsprechen (ca. 5 s bis 20 s). Ziel ist es bei konstanten geometrisch-konstruktiven Randbedingungen, den Einfluss der Wärmeführung auf Gefüge und resultierende Eigenspannungen zu analysieren. Für die Streckenenergie können neben den Gefügeeinflüssen aufgrund der resultierenden Abkühlzeit deutliche Effekte insbesondere auf die lokalen Eigenspannungen im Bauteil belegt werden. Das Schweißen mit zu hoher Wärmeeinbringung bzw. Abschmelzleistung kann zu ungünstigen Gefüge- und Bauteileigenschaften führen, gleichzeitig jedoch niedrigere Zugeigenspannungsniveaus bewirken. Solche komplexen Wechselwirkungen gilt es letztlich mit diesen Untersuchungen zu klären, um leicht anwendbare Verarbeitungsempfehlungen und Normvorgaben für ein wirtschaftliches, anforderungsgerechtes und risssicheres WAAM von hochfesten Stählen den Anwendern zur Verfügung zu stellen. T2 - DVS Congress 2021 CY - Online meeting DA - 14.09.2021 KW - MAG-Schweißen KW - Hochfester Stahl KW - Eigenspannungen KW - Additive Fertigung KW - Kaltrisssicherheit PY - 2021 SN - 978-3-96144-146-4 VL - 371 SP - 16 EP - 22 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-56669 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Schröpfer, Dirk A1 - Wandtke, Karsten A1 - Kannengießer, Thomas T1 - Wire Arc Additive Manufacturing (WAAM) mit hochfesten Feinkornbaustählen N2 - Die additive Verarbeitung hochfester Feinkornbaustähle mittels Wire Arc Additive Manufacturing (WAAM) ist ein komplexes, aber zugleich auch effizientes Verfahren, bei dem Werkstoff, Bauteilgeometrie und Schweißprozess gezielt aufeinander abgestimmt sein müssen. Ziel dieser Studie war es, einen Zusammenhang zwischen den Prozessparametern und der generierten Schichtgeometrie zu ermitteln. Dazu wurden definierte Referenzkörper mit einem robotergestützten Schweißsystem additiv gefertigt und hinsichtlich Schichthöhe, Wandstärke und Mikrostruktur analysiert. Fokus der Untersuchung waren sowohl konventionelle als auch für die WAAM-Fertigung speziell entwickelte hochfeste Schweißzusatzwerkstoffe. Die geometrischen Eigenschaften additiv gefertigter Bauteile lassen sich insbesondere durch die Faktoren Drahtvorschubgeschwindigkeit und Schweißgeschwindigkeit gezielt einstellen. Jedoch können diese Parameter nicht beliebig variiert werden, auch aufgrund der rheologischen Eigenschaften der Zusatzwerkstoffe. Zu hohe Streckenenergien führen zu lokalen Überhitzungen und Fehlstellen in der generierten Schicht. Undefinierte Fließ- und Erstarrungsvorgänge im überhitzten Bereich erschweren die maßhaltige Fertigung. Deshalb wird bei speziellen WAAM-Schweißdrähten das Fließverhalten gezielt modifiziert, sodass es über einen größeren Temperaturbereich hinweg konstant ist. Erst die Kenntnis über die komplexen Zusammenhänge zwischen den Prozessparametern und der Bauteilgeometrie ermöglicht die Erzeugung exakter Schichtmodelle für die additive Fertigung. Dies bildet die Grundlage für die Bearbeitung weiterer Fragestellungen auf dem Gebiet der additiven Fertigung mit hochfesten Zusatzwerkstoffen und insbesondere deren Anwendung in modernen hochfesten Bauteilen. T2 - 41. Assistentenseminar Fügetechnik CY - Magdeburg, Germany DA - 03.09.2020 KW - MAG-Schweißen KW - Eigenspannungen KW - Additive Fertigung KW - Hochfester Stahl KW - Kaltrisssicherheit PY - 2021 SN - 978-3-96144-141-9 VL - 370 IS - 41 SP - 113 EP - 124 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-56641 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Härtel, S. A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Einfluss der Wärmeführung auf die Eigenschaften und fertigungsbedingten Beanspruchungen additiv geschweißter hochfester Feinkornbaustähle N2 - Hochfeste Feinkornbaustähle verfügen über ein großes Potenzial für gewichtsoptimierte, effiziente Strukturen in vielen modernen Stahlkonstruktion. Weitere Effizienzsteigerungen können durch additives Fertigen sowie bionische Bauweisen erreicht werden. Kommerzielle hochfeste Zusatzwerkstoffe für additives MSG-Schweißen (engl.: Wire Arc Additive Manufacturing, WAAM) sind bereits von den Schweißzusatzherstellern lieferbar. Derzeit ist jedoch eine breite industrielle Anwendung insbesondere für KMU aufgrund fehlender quantitativer Erkenntnisse und Richtlinien bezüglich schweißbedingter Beanspruchungen und Bauteilsicherheit während der Herstellung und des Betriebs stark limitiert. In einem gemeinsamen Forschungsprojekt (FOSTA-P1380/IGF21162BG) der BAM und der TU Chemnitz werden die mit Eigenspannungsausbildung und der Gefahr einer Kaltrissbildung verbundenen prozess- und werkstoffbedingten sowie konstruktiven Einflüsse untersucht. Im Fokus dieser Analysen steht die Bestimmung der Wechselwirkungen zwischen WAAM-Prozessparametern bzw. der Wärmeführung auf das Gefüge und die Eigenspannungen. Hierfür werden Referenzproben als offene Hohlquader mit definierten Abmessungen vollautomatisiert mit einem speziellen, hochfesten WAAM-Massivdraht (Streckgrenze >790 MPa) geschweißt. Die gezielte Einstellung der geometrischen Eigenschaften erfolgt durch Schweißparameter und Nahtaufbau bei ca. 4 kg/h mittlerer Abschmelzleistung. Die Wärmeführung wird innerhalb eines statistischen Versuchsplanes mittels Streckenenergie (200 kJ/m bis 650 kJ/m) und Zwischenlagentemperatur (100 °C bis 300 °C) so variiert, dass die t8/5-Abkühlzeiten dem empfohlenen Verarbeitungsbereich entsprechen (ca. 5 s bis 20 s). Ziel ist es bei konstanten geometrisch-konstruktiven Randbedingungen, den Einfluss der Wärmeführung auf Gefüge und resultierende Eigenspannungen zu analysieren. Darüber hinaus erfolgt die Bestimmung des Einflusses der t8/5-Abkühlzeit auf die mechanisch-technologischen Eigenschaften des speziellen, hochfesten WAAM-Massivdrahts mithilfe von Dilatometeranalysen. Für die Streckenenergie können neben den Gefügeeinflüssen aufgrund der resultierenden Abkühlzeit deutliche Effekte insbesondere auf die lokalen Eigenspannungen im Bauteil belegt werden. Das Schweißen mit zu hoher Wärmeeinbringung bzw. Abschmelzleistung kann zu ungünstigen Gefüge- und Bauteileigenschaften führen, gleichzeitig jedoch niedrigere Zugeigenspannungsniveaus bewirken. Die Dilatometeranalysen zeigen für den untersuchten WAAM-Schweißzusatzwerkstoff eine großes t8/5-Zeitfenster mit einer vergleichsweise geringen Abnahme der Zugfestigkeit mit zunehmender t8/5-Abkühlzeit. Solche komplexen Wechselwirkungen gilt es letztlich mit diesen Untersuchungen zu klären, um leicht anwendbare Verarbeitungsempfehlungen und Normvorgaben für ein wirtschaftliches, anforderungsgerechtes und risssicheres WAAM von hochfesten Stählen den Anwendern zur Verfügung zu stellen. T2 - 42. Assistentenseminar Fügetechnik CY - Brunswick, Germany DA - 06.10.2021 KW - MAG-Schweißen KW - Hochfester Stahl KW - Eigenspannungen KW - Additive Fertigung KW - Kaltrisssicherheit PY - 2022 SN - 978-3-96144-210-2 VL - 385 IS - 42 SP - 94 EP - 101 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-56642 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Einfluss von Wärmeführung und Bauteildesign auf die Eigenschaften und fertigungsbedingten Beanspruchungen additiv geschweißter hochfester Feinkornbaustähle N2 - Hochfeste Feinkornbaustähle verfügen über großes Potenzial für gewichtsoptimierte, effiziente Strukturen in vielen modernen Stahlkonstruktion. Weitere Effizienzsteigerungen können durch additives Fertigen sowie bionische Bauweisen erreicht werden. Hochfeste Zusatzwerkstoffe für additives MSG-Schweißen (engl.: Wire Arc Additive Manufacturing, WAAM) sind bereits von den Schweißzusatzherstellern lieferbar. Eine breite industrielle Anwendung insbesondere für KMU ist aufgrund fehlender quantitativer Erkenntnisse und Richtlinien bezüglich schweißbedingter Beanspruchungen und Bauteilsicherheit während der Herstellung und des Betriebs derzeit stark limitiert. In einem gemeinsamen Forschungsprojekt (FOSTA-P1380/IGF21162BG) der BAM und der TU Chemnitz werden daher die mit Eigenspannungsausbildung und der Gefahr einer Kaltrissbildung verbundenen prozess- und werkstoffbedingten sowie konstruktiven Einflüsse beim WAAM hochfester Stähle untersucht. Der vorliegende Beitrag fokussiert die Analyse der Auswirkungen von Schweißwärmeführung und Design der WAAM-Bauteile auf die Abkühlbedingungen, Gefüge, mechanisch-technologischen Eigenschaften und Eigenspannungen. Hierfür werden geometrisch definierte Probenkörper (Hohlquader) vollautomatisiert mit einem speziellen, hochfesten WAAM-Massivdraht (Streckgrenze >790 MPa) geschweißt. Die Wärmeführung und Probenabmessungen werden innerhalb eines statistischen Versuchsplans variiert. Die Schweißwärmeführung wird dabei so eingestellt, dass die t8/5-Abkühlzeiten im empfohlenen Verarbeitungsbereich (ca. 5 s bis 20 s) sichergestellt sind. Hierzu ließen sich über zusätzliche thermo-physikalische Umformsimulationen mittels Dilatometer die komplexen Wärmezyklen abbilden und die resultierende Zugfestigkeit des Schweißgutes bestimmen. Das WAAM-Schweißen komplexer Geometrien mit variierenden Schweißwärmeführungen und geometrischen Verhältnissen bzw. Wanddicken bedingt neben den Auswirkungen auf die Abkühlbedingungen, Abkühlzeiten und Gefüge deutliche Einflüsse auf die konstruktiven Steifigkeitsverhältnisse beim Schweißen. Es zeigen sich anhand der Schweißexperimente signifikante Auswirkungen durch Probenskalierung und Wärmeeinbringung auf die resultierenden lokalen Eigenspannungen. Die Folge können ungünstige Bauteileigenschaften und risskritische Zugeigenspannungen sein. T2 - DVS Congress 2022 CY - Koblenz, Germany DA - 19.09.2022 KW - MAG-Schweißen KW - Additive Fertigung KW - Eigenspannungen KW - Hochfester Stahl KW - Kaltrisssicherheit KW - Wärmeführung KW - Windenergie PY - 2022 SN - 978-3-96144-189-1 VL - 382 SP - 737 EP - 745 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-56719 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Kannengießer, Thomas A1 - Schröpfer, Dirk T1 - Einfluss der Wärmeführung auf die Eigenspannungsausbildung und Kaltrisssicherheit in geschweißten Konstruktionen aus hochfesten Feinkornbaustählen N2 - Aus wirtschaftlichen, konstruktiven sowie ästhetischen Aspekten werden moderne Stahlbaukonstruktionen immer schlanker und leichter ausgeführt. Dazu werden zunehmend hochfeste Feinkornbaustähle mit Dehngrenzen ≥ 690 MPa eingesetzt, wodurch eine Gewichtsreduzierung von 30 % bis 50 % und eine Kostenersparnis von 5 % bis 15 % erreicht werden kann. Das Potential hochfester Feinkornbaustähle ist unter Beachtung der heutigen Richtlinien und Regelwerke jedoch nicht ohne weiteres nutzbar. Durch das Forschungsvorhaben wurde der Einfluss der Wärmeführung auf die Eigenspannungsausbildung und Kaltrissbildung unter Berücksichtigung realitätsnaher Steifigkeitsbedingungen untersucht. Auf der Grundlage dieser Erkenntnisse wurde ein Beitrag zur Verbesserung der Verarbeitungsrichtlinien erarbeitet, welche dem Verarbeiter eine sichere schweißtechnische Verarbeitung bei verbesserter Ausnutzung der Materialeigenschaften ermöglicht. Vor allem die Tragfähigkeit und die Sicherheit der Schweißverbindung bestimmen die Bemessung der Konstruktion und somit den nachhaltigen und ökonomischen Einsatz dieser Güten. Der Zusammenhang zwischen der Höhe der entstehenden Eigenspannungen und der Wärmeführung in realen Konstruktionen ist zurzeit nur qualitativ überschaubar und führt zu einer eher konservativen Auslegung heutiger Schweißkonstruktionen. Die wirtschaftliche Verarbeitung hochfester Stähle wird neben dem Erreichen anforderungsgerechter mechanischer Eigenschaften im Schweißnahtbereich vor allem durch die Vermeidung von Kaltrissen bestimmt. Die diesbezüglichen Empfehlungen in den geltenden Regelwerken beruhen jedoch vornehmlich auf Erkenntnissen aus Laborschweißungen an Kleinproben unter freier äußerer Schrumpfung. Die Hauptursachen für die Entstehung von Eigenspannungen wie inhomogene, lokale Erwärmung und Abkühlung der schweißnahtnahen Bereiche und insbesondere die konstruktive Schrumpfbehinderung infolge umgebender Montagegruppen werden damit jedoch nicht abgebildet. Der Einfluss der Wärmeführung, insbesondere der lokalen Vorwärmung, auf die Eigenbeanspruchung einer Konstruktion ist derzeit weitgehend unbekannt. Ziel des Forschungsvorhabens war es, den Einfluss der Wärmeführung auf die Eigenspannungsausbildung in geschweißten Konstruktionen zu quantifizieren sowie Aussagen zur Beeinflussung und Absenkung der Eigenspannungen und somit der Gesamteigenbeanspruchung von Schweißkonstruktionen zu erarbeiten. Dazu wurden durch die sukzessive Steigerung des Einspanngrades der Zusammenhang zwischen Wärmeführung und resultierender Eigenspannung unter zusätzlicher Schrumpfbehinderung geklärt. Ferner wurde die Übertragbarkeit der den Regelwerken zugrundeliegenden Kleinprobenergebnisse auf reale Konstruktionen untersucht. Mithilfe systematischer Klein- und Großlastschweißversuche an definiert schrumpfbehinderten Proben konnte der Einfluss der Wärmeführung sowohl auf die lokalen nahtnahen Eigenspannungen als auch globale Eigenbeanspruchungen durch Reaktionsspannungen analysiert werden. Es zeigte sich, dass eine Reduktion der lokalen Eigenspannungen und der Eigenbeanspruchung von geschweißten Konstruktionen durch eine geringere Wärmeeinbringung möglich ist. Eine Absenkung der Zwischenlagentemperatur erwies sich dabei unter anderem als besonders günstig. Damit ist es möglich vorhandene Wärmeführungskonzepte für hochfeste Stähle zu optimieren und dadurch die Kaltrissbildung zu vermeiden. KW - Eigenspannungen KW - Schweißen KW - Kaltrisssicherheit KW - Hochfester Stahl PY - 2015 UR - https://matplus.shop/produkt/p-922-einfluss-der-waermefuehrung-auf-die-eigenspannungsausbildung-und-kaltrisssicherheit-in-geschweissten-konstruktionen-aus-hochfesten-feinkornbaustaehlen SN - 987-3-942541-57-2 N1 - Schlussbericht zu dem über die Arbeitsgemeinschaft industrieller Forschungsvereinigungen "Otto von Guericke" (AiF) im Rahmen des Programms zur Förderung der Industriellen Gemeinschaftsforschung und -entwicklung (IGF) vom Bundesministerium für Wirtschaft und Technologie (BMWi) aufgrund eines Beschlusses des Deutschen Bundestages geförderten Vorhaben IGF 17267 N (Bewilligungszeitraum: 01.09.2011 bis 31.12.2013) VL - P 922 SP - 1 EP - 121 PB - Verlag und Vertriebsgesellschaft CY - Düsseldorf AN - OPUS4-59255 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Kannengießer, Thomas A1 - Schröpfer, Dirk T1 - Einsatz modifizierter Sprühlichtbogenprozesse zur Optimierung schweißbedingter Beanspruchungen an Bauteilen aus hochfesten Feinkornbaustählen N2 - Aufgrund aktueller Leichtbaubestrebungen sowie Forderungen nach Energie- und Ressourceneffizienz werden zunehmend hochfeste Feinkornbaustähle mit Streckgrenzen ≥ 690 MPa in modernen Stahlkonstruktionen eingesetzt. Vorrangig werden diese mit Streckgrenzen bis 960 MPa verarbeitet und mittels MAG-Schweißprozessen gefügt. Moderne Invertertechnik ermöglichte jüngst zahlreiche Firmenentwicklungen (bspw. „DeepARC“, „forceArc“), die zu modifizierten Sprühlichtbögen (mod. SLB) mit ähnlichen Eigenschaften führten. Neben den bekannten wirtschaftlichen Vorteilen dieser mod. SLB, lassen gerade die reduzierten möglichen Nahtöffnungswinkel und die geringere Wärmeeinbringung eine positive Wirkung auf schweißbedingte Beanspruchungen erwarten. Erste Eigenspannungsanalysen bei vorangegangenen Schweißeignungsuntersuchen mit mod. SLB zeigten bereits bei freischrumpfenden Laborproben geringere Zugeigenspannungen in der Schweißnaht im Vergleich zu konventionell geschweißten Proben. Die betriebsfeste Auslegung von hochfesten Schweißkonstruktionen und die Ausnutzung hoher Streckgrenzen erfordern jedoch eine ausreichende Quantifizierung schweißbedingter Beanspruchungen der mod. SLB unter definierter, bauteilrelevanter Schrumpfbehinderung. Dies betrifft sowohl die Kräfte und Spannungen im lokalen Schweißnahtbereich als auch die Gesamtbeanspruchung sowie den Einfluss von Wärmeführung, Bauteilgeometrie, Einspanngrad und Nahtöffnungswinkel. Hierzu lagen in der Industrie, besonders bei den KMU, kaum Kenntnisse vor und sollten deshalb als Ziel dieses Forschungsprojektes erarbeitet werden. Die vergleichenden Untersuchungen mit konventionellen Lichtbogen und mod. SLB mit angepasster Nahtkonfiguration erfolgten mithilfe von speziellen Prüfanlagen, mit der reale Bauteilsteifigkeiten abgebildet werden können. Bei beiden Prozessvarianten waren mit den gewählten Parametern Schweißnähte unter Erfüllung der Anforderungen an die mechanisch-technologischen Eigenschaften realisierbar. Bei den Analysen konnte eine signifikante Reduzierung der Eigenbeanspruchungen durch eine verminderte Wärmeeinbringung bei dem Einsatz einer Nahtkonfiguration mit abgesenktem Nahtöffnungswinkel beobachtet werden. Insbesondere erwiesen sich zur Absenkung mehrachsiger Beanspruchungszustände aufgrund von Biegemomenten in den bauteilnahen Schweißungen die engeren Nahtspalte als zielführend. Eine Vorstellung der erarbeiteten Kenntnisse und Empfehlungen in entsprechenden Gremien zur Normung erfolgten, um mittelfristig vor allem den KMU eine einfachere Konstruktionsauslegung und sichere Verarbeitung hochfester Feinkornbaustähle zu ermöglichen. Mit einer normativen Absicherung kann Qualifizierungs- und Zulassungsaufwand eingespart werden, der aktuell beim Einsatz hochfester Stähle vielfach notwendig ist. Ferner werden die Betriebe durch die Ergebnisse in die Lage versetzt, die technischen und wirtschaftlichen Vorteile der mod. SLB-Prozesse auszunutzen und signifikante Einsparungen bei Schweißzusatz, Schweiß- und Rüstzeit sowie unter Berücksichtigung der Eigenbeanspruchung optimierte Ergebnisse hinsichtlich der Tragfähigkeit von Bauteilen zu erreichen und die Produktivität zu erhöhen. KW - MAG-Schweißen KW - Hochfester Stahl KW - Eigenspannungen KW - Kaltrisssicherheit PY - 2017 UR - https://matplus.shop/produkt/p-1011-einsatz-modifizierter-spruehlichtbogenprozesse-zur-optimierung-schweissbedingter-beanspruchungen-an-bauteilen-aus-hochfesten-feinkornbaustaehlen-2 SN - 978-3-946885-12-2 N1 - Das IGF-Vorhaben 17978 N wurde über die Arbeitsgemeinschaft industrieller Forschungsvereinigungen "Otto von Guericke" (AiF) im Rahmen des Programms zur Förderung der Industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Energie (BMWi) aufgrund eines Beschlusses des Deutschen Bundestages gefördert VL - P 1011 SP - 1 EP - 136 PB - Verlag und Vertriebsgesellschaft CY - Düsseldorf AN - OPUS4-59257 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -