TY - GEN A1 - Kannengießer, Thomas A1 - Wolf, Martin A1 - Schobbert, Helmut T1 - Recent developments in nickel base material welding considering the influence of shielding gas on the hot cracking resistance T2 - Stainless Steel World America 2004 Conference & Expo CY - Houston, TX, USA DA - 2004-10-20 KW - Nickel base material KW - Welding KW - Shielding gas KW - Hot cracking resistance PY - 2004 SN - 90-73168-23-6 SP - 156 EP - 167 PB - KCI Publ. BV CY - Zutphen AN - OPUS4-4581 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Altenkirch, J. A1 - Gibmeier, J. A1 - Kostov, V. A1 - Kromm, Arne A1 - Kannengießer, Thomas A1 - Doyle, S. A1 - Wanner, A. T1 - Time- and temperature-resolved synchrotron X-ray diffraction: observation of phase transformation and strain evolution in novel low temperature transformation weld filler materials N2 - Solid-state phase transformations and the evolution of thermal and elastic strains in novel low temperature transformation (LTT) weld filler materials in the near surface region are monitored in real time by means of an innovative experimental set-up at the PDIFF (powder diffraction) beamline at the synchrotron light source ANKA (Angströmquelle Karlsruhe) at the KIT (Karlsruhe Institute for Technology). The key components of the diffraction set-up are two fast microstrip line detectors, which enables the strain evolution to be followed as a function of time and temperature for a 0.5?s counting time. During controlled heating and cooling cycles, as well as during near welding cycles, the martensite–austenite–martensite phase transitions are analysed. The transformation kinetics are monitored during resistance heating of small chips of the pure LTT alloys and during gas tungsten arc welding of simplified LTT welds using a specially designed welding rig for in-situ studies on the diffraction instruments. Under the mechanically unconstrained condition allowing free thermal expansion and shrinkage, the LTT alloys are found to exhibit decreasing transformation temperatures Ac and MS and increasing phase fraction of retained austenite for increasing Ni content. The strain evolution during welding reveals increased compressive stresses upon welding, which is attributed to the martensite formation upon cooling, which counteracts the thermal contraction strains. Comparison of the transformation temperatures reveals higher values than in the pure LTT alloys, but no variation between the different alloys. On the one hand, this is attributed to preferred grain orientation affecting the diffraction measurements and the determination of the transformation temperatures. On the other hand, it is possible that with the different chemical compositions of the LTT alloys and the mechanical constraints during welding, the evolution of the residual strain and stress may vary and result in counteracting affects with respect to lowered martensite start temperatures. KW - In-situ synchrotron X-ray diffraction KW - Low temperature transformation KW - Welding PY - 2011 U6 - https://doi.org/10.1177/0309324711413190 SN - 0309-3247 SN - 2041-3130 VL - 46 IS - 7 SP - 563 EP - 579 PB - Sage CY - London AN - OPUS4-24683 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lorenz, S. A1 - Kannengießer, Thomas A1 - Posch, G. T1 - Suitability of high-alloyed flux-cored wire electrodes for laser-GMA hybrid welding N2 - The object of this research project related to investigations into the qualification of flux-cored wire electrodes for the laser-GMA hybrid welding of high-alloyed steels. Because of its annular metal shell and the powdery filling, this type of wire electrode permits stable, low-spatter metal transfer comparable with that in the spray arc, particularly in the upper range of the attainable deposition rates. In contrast with this, controlled metal transfer during the deposition of solid wire electrodes is achieved using pulsed arc technology. When these filler materials are welded, the properties specific to the material and to the process have a significant influence on the weld metallurgy as well as on the process stability. Tests were carried out on the AISI 403L (X2CrNi1911) high-alloyed base material in order to investigate the transferability of the attainable material properties from GMA welding to laser-GMA hybrid welding. Four wire electrodes were used according to DIN EN 12072 and DIN EN ISO 17633: a T 19 9 L P M 1 rutile fluxcored wire designed specifically for welding in position, a T 19 9 L R M (C) 3 rutile flux-cored wire suitable for welding in the flat position, a T 19 9 L M M 1 metal-powder flux-cored wire as well as a G 19 9 L Si solid wire. KW - Welding KW - Laser GMA hybrid welding PY - 2012 SN - 1612-3433 VL - 11 IS - 3 SP - 181 EP - 187 PB - DVS - German Welding Society CY - Düsseldorf AN - OPUS4-26298 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kannengießer, Thomas A1 - Lausch, Thomas A1 - Kromm, Arne T1 - Effects of heat control on the stress build up during high-strength steel welding under defined restraint conditions T2 - 62nd IIW Annual assembly and conference CY - Singapore DA - 2010-07-12 KW - Welding KW - Heat control KW - Stress build up KW - High-strength steel KW - Restraint intensity PY - 2009 IS - IIW Doc IX-2316-09 (IX-L-1055-09) SP - 1 EP - 8 AN - OPUS4-22316 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kannengießer, Thomas A1 - Lausch, Thomas A1 - Kromm, Arne T1 - Effects of heat control on the stress build up during high strength steel welding under defined restraint conditions T2 - International Conference on high strength steels for hydropower plants CY - Takasaki, Japan DA - 2009-07-20 KW - Welding KW - Heat control KW - Stress build up KW - High-strength steel KW - Restraint intensity PY - 2009 UR - http://www-it.jwes.or.jp/proceedings/en/3-10.pdf SP - 10-1 - 10-8 AN - OPUS4-22317 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kromm, Arne A1 - Thomas, Maximilian A1 - Kannengießer, Thomas A1 - Gibmeier, J. A1 - Vollert, F. T1 - Assessment of the Solidification Cracking Susceptibility of Welding Consumables in the Varestraint Test by Means of an Extended Evaluation Methodology N2 - Various test methods are available for assessing the susceptibility of materials to solidification cracking during welding. In the widely used Varestraint test, the crack length is selected as a criterion as a function of the applied bending strain. Unfortunately, the crack length does not characterize the material behavior alone but depends to varying degrees on the individual test parameters used, which makes the interpretation of the results difficult. In addition, the crack length is not comparable under different test conditions. To overcome these disadvantages, we have developed a novel evaluation methodology that decouples the machine influence from the material behavior. The measured crack length is related to the maximum possible value specified by welding speed and deformation time. This relative crack length is calculated numerically, considering the orientation of the cracks. Experiments on two high-alloy martensitic welding consumables show that, in contrast to the conventional evaluation, a comparison of different welding parameters becomes possible. Furthermore, the strain rate proved to be a suitable crack criterion in agreement with Prokhorov's hot cracking model. KW - Welding KW - Solidification cracking KW - Varestraint test PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-545780 SN - 1438-1656 SP - 2101650 PB - Wiley online library AN - OPUS4-54578 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, Lei A1 - Kannengießer, Thomas T1 - Austenite grain growth and microstructure control in simulated heat affected zones of microalloyed HSLA steel N2 - The roles of microalloying niobium, titanium and vanadium for controlling austenite grain growth, microstructure evolution and hardness were investigated at different simulated heat affected zones (HAZ) for high strength low alloy (HSLA) S690QL steel. High resolution FEG-SEM has been used to characterize fine bainitic ferrite, martensite and nanosized second phases at simulated coarse and fine grain HAZs. It was found that for Ti bearing steel (Ti/N ratio is 2) austenite grain had the slowest growth rate due to the presence of most stable TiN. The fine cuboidal particles promoted intragranular acicular ferrite (IGF) formation. Nb bearing steel exhibited relatively weaker grain growth retardation compared with titanium bearing steels and a mixed microstructure of bainite and martensite was present for all simulated HAZs. IGF existed at coarse grain HAZ of Ti+V bearing steel but it was totally replaced by bainite at fine grain HAZs. Hardness result was closely related to the morphology of bainitic ferrite, intragranular ferrite and second phases within ferrite. The microstructure and hardness results of different simulated HAZs were in good agreement with welded experimental results. KW - Hardness measurement KW - Microstructure KW - Microalloyed steel KW - Welding KW - Grain growth PY - 2014 U6 - https://doi.org/10.1016/j.msea.2014.06.106 SN - 0921-5093 VL - 613 SP - 326 EP - 335 PB - Elsevier B.V. AN - OPUS4-36520 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Stress Build-Up during Mulitlayer Welding with Novel Martensitic Filler Materials N2 - Neuartige sogenannte Low-Transformation-Temperature (LTT)- Schweißzusätze weisen eine chemische Zusammensetzung auf, welche die Martensitbildung zu vergleichsweise niedrigen Temperaturen verschiebt. Dies wirkt sich maßgeblich auf die nach dem Schweißen vorliegenden Eigenspannungen aus. Obwohl dazu zahlreiche Veröffentlichungen vorliegen, blieben die Wirkzusammenhänge zwischen Umwandlungstemperatur und Schweißeigenspannungen bislang ungeklärt. Aus diesem Grund wurde in der vorliegenden Arbeit ein Versuch in einer Großprüfanlage durchgeführt, um den Einfluss der Martensitumwandlung während des Mehrlagenschweißens zu analysieren. Die In-Prozess-Beobachtung der auftretenden Kräfte und Momente offenbarte, dass die Eigenspannungsreduktion vom jeweils umwandelnden Volumen abhängt. Die Analyse der Schweißeigenspannungen verdeutlichte, dass die angestrebte Eigenspannungsbeeinflussung durch den Zusatzwerkstoff stark von den Randbedingungen (d. h. Nahtaufbau, Blechdicke) abhängt und einer Bewertung im jeweiligen Anwendungsfall bedarf. N2 - Controlling the level of mostly detrimental residual stresses already during the welding process would be highly attractive as time and cost consuming post processing may be prevented. Innovative Low Transformation Temperature (LTT-) filler materials are specially designed for Controlling weld residual stresses by means of adjusted martensite formation already during welding. Numerous publications can be found on this issue, but they provide only little insight into the interaction between martensite formation and resulting welding residual stresses. Within this study a component weld test was performed in a special large-scale testing facility. In-situ load analysis revealed that the amount of stress reduction during deposition of the individual weld runs is dependent on the weld volume undergoing phase transformation related to the shrinking volume. The residual stresses found alter welding show that the desired residual stress control by using LTT alloys is sensitive to welding boundary conditions (i. e. weld geometry, plate thickness) and to be evaluated separately for varying weld scenarios. T2 - Spannungsentstehung während des Mehrlagenschweißens mit einem neuartigen martensitischen Schweißzusatz KW - Residual stresses KW - LTT filler material KW - Martensite KW - Phase transformation KW - Welding KW - Eigenspannungen KW - LTT-Zusatzwerkstoff KW - Martensit KW - Phasenumwandlung KW - Schweißen PY - 2014 U6 - https://doi.org/10.3139/105.110210 SN - 2194-1831 SN - 1867-2493 VL - 69 IS - 2 SP - 80 EP - 88 PB - Hanser CY - München AN - OPUS4-30719 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gibmeier, J. A1 - Held, A. A1 - Altenkirch, J. A1 - Kromm, Arne A1 - Kannengießer, Thomas A1 - Buslaps, T. T1 - Real time monitoring of phase transformation and strain evolution in LTT weld filler material using EDXRD N2 - For a newly developed 10% Cr and 10% Ni low transformation temperature (LTT) weld filler material, the local phase transformation kinetics and the strain evolution during gas tungsten arc welding (GTAW) under real welding conditions was studied. An experimental set-up and a measuring and evaluation strategy are presented to gain a real time insight into the welding process. The experiments were carried out at the beam line ID15@ESRF using a two detector EDXRD (energy dispersive X-ray diffraction) set-up and high energy synchrotron X-rays. The time-resolved diffraction analysis during welding was carried out locally throughout the weld in longitudinal as well as in transverse direction to the weld line to examine the interdependence of the strain state and the transformation kinetics. This comprehension is crucial for the optimization of the weld process, and thus for the tailoring of the resulting residual stress states, which is one of the main issues for the application of LTT alloys. Using the herein proposed approach EDXRD diffraction pattern can be monitored during real welding with a counting rate of 5 Hz. By means of the time resolved diffraction data the local transformation temperatures and times were determined and the local phasespecific strain evolutions are discussed with respect to the transformation rates and the time-delayed phase transformations. KW - In situ synchrotron X-ray diffraction KW - Low transformation temperature KW - Welding PY - 2014 U6 - https://doi.org/10.1016/j.jmatprotec.2014.06.008 SN - 0924-0136 SN - 1873-4774 VL - 214 IS - 11 SP - 2739 EP - 2747 PB - Elsevier CY - Amsterdam AN - OPUS4-30955 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schaupp, Thomas A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Welding residual stress distribution of quenched and tempered and thermo-mechanically hot rolled high strength steels N2 - Beside quenched and tempered (QT) high strength steels advanced technologies in steel manufacturing provide steels produced by the thermo-mechanical controlled process (TMCP) with yield strength of 960 MPa. These steels differ in the carbon and micro-alloying element content. With variation of heat control TIG-welded dummy seams on both steel types were performed. Analyses concerning microstructure and residual stress evolution due to welding showed typical stress distributions according to common concepts. Yet, the TMCP-steel shows higher residual stresses than the QT-steel. KW - Mill Scale KW - Quenched KW - Residual Stress KW - Tempered High Strength Steel KW - Thermo-Mechanical Controlled Process KW - Welding PY - 2014 U6 - https://doi.org/10.4028/www.scientific.net/AMR.996.457 SN - 1022-6680 SN - 1662-8985 VL - 996 SP - 457 EP - 462 PB - Trans Tech Publ. CY - Zurich AN - OPUS4-31443 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -