TY - JOUR A1 - Schartel, Bernhard A1 - Kühn, Gerhard A1 - Mix, Renate A1 - Friedrich, Jörg Florian T1 - Surface Controlled Fire Retardancy of Polymers Using Plasma Polymerisation N2 - Communication: Fire retardant coatings are deposited on polyamide-66 using plasma polymerisation. Chemical composition and thickness of deposits are adjusted varying the plasma treatment based on hexamethydisiloxane mixed with oxygen. The fire retardancy performances are evaluated using a cone calorimeter. The correlation between fire retardancy and thickness as well as chemical composition is discussed. KW - Cone calorimeter KW - Flame retardance KW - Heat release KW - Plasma polymerization KW - Polyamides PY - 2002 U6 - https://doi.org/10.1002/1439-2054(20020901)287:9<579::AID-MAME579>3.0.CO;2-6 SN - 1438-7492 SN - 1439-2054 VL - 287 IS - 9 SP - 579 EP - 582 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-1537 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Friedrich, Jörg Florian A1 - Retzko, Iris A1 - Kühn, Gerhard A1 - Unger, Wolfgang A1 - Lippitz, Andreas T1 - Plasma polymers with chemically defined structures in contact with metals N2 - The retention of chemical structure and functional groups during plasma polymerization was investigated. Usually plasma polymer layers, prepared by a continuous wave radio-frequency plasma, are often chemically irregular in their structure and composition. To minimize these irregularities low wattages and the pulsed plasma technique were applied to avoid fragmentations. The first goal was to produce plasma polymers comprising double or triple bonds as precursors for electrically conducting polymers. Acetylene, ethylene, butadiene and polystyrene were used as monomers and deposited as thin polymer films by pulsed plasmas of low wattages. Styrene polymerization was strongly enhanced in the dark phase (plasma off) of a pulsed r.f. plasma caused by the reactivity of the vinyl-type double bond. This could be confirmed by a verification of a rather high chemical regularity of the film sample. The oxygen content of this film measured by X-ray photoelectron spectrometry (XPS) was in situ 0% and after 24 h exposure to air lower than 1%. Additionally, post-plasma oxidations of trapped radicals with air could be suppressed using NO gas as radical quencher. Such quenched plasma polymer layers were completely stable against oxidation for a number of weeks. During the low-wattage pulse plasma polymerization metal atoms were simultaneously or layer by layer evaporated into the growing layer and in situ measured by XPS. These metal atoms are acting as dopants. Here, Li, K, Mg and Cr were used at different concentrations providing electrical conductivity and magnetic properties for the film. KW - Pulsed plasma KW - Plasma polymerization KW - Doping with metal atoms KW - Encapsulation of nanoparticles PY - 2001 U6 - https://doi.org/10.1016/S0257-8972(01)01051-9 SN - 0257-8972 VL - 142-144 SP - 460 EP - 467 PB - Elsevier Science CY - Lausanne AN - OPUS4-6972 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -