TY - GEN A1 - Friedrich, Jörg Florian A1 - Retzko, Iris A1 - Kühn, Gerhard A1 - Unger, Wolfgang A1 - Lippitz, Andreas ED - Mittal, K. T1 - Metal doped plasma polymer films T2 - 7th Symposium on Metallized Plastics CY - Newark, NJ, USA DA - 1999-12-02 KW - Plasma polymer KW - r.f. pulsed plasma KW - Conducting films KW - Metal-polymer interface PY - 2001 SN - 90-6764-340-8 VL - 7 SP - 117 EP - 142 PB - VSP CY - Utrecht AN - OPUS4-929 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Friedrich, Jörg Florian A1 - Mix, Renate A1 - Kühn, Gerhard A1 - Retzko, Iris A1 - Schönhals, Andreas A1 - Unger, Wolfgang T1 - Plasma-based introduction of monosort functional groups of different type and density onto polymer surfaces. Part 2: Pulsed plasma polymerization N2 - This new functionalization method consists of the deposition of very thin plasma polymer layers (20 to 100 nm) of functional group bearing monomers in pulsed plasma. With allylalcohol, a maximum of 30 OH groups per 100 C atoms was measured with a selectivity of about 90% and a significant stability at long-time exposure to air. Allylamine was used to produce primary amino groups, with a maximum of 18 NH2 groups per 100 C atoms. Side reactions were observed during the storage in air, such as oxidation of the amino groups. Carboxylic groups could be produced using acrylic acid with a maximum concentration of 24 COOH groups per 100 C atoms. The most prominent side reaction was the decarbonylation/ decarboxylation of the acid group during plasma deposition.___TAGSTART___BR___TAGEND___ The variation of the density of functional groups using the pulsed-plasma polymerization of functional-group-bearing monomers was possible by the chemically-initiated radical copolymerization with either a chain-extending monomer, such as ethylene, or a cross linker, such as butadiene, in plasma. The density of functional groups could be adjusted continuously (0 to 30 OH, 0 to 18 NH2 and 0 to 24 COOH groups per 100 C atoms).___TAGSTART___BR___TAGEND___ The successful application of these densely functionalized polymer surfaces for producing biocompatible surfaces and for use in metal–polymer composites is proposed. KW - Pulsed plasma polymerization KW - Plasma-initiated copolymerization KW - Charcterization of homo- and copolymers PY - 2003 U6 - https://doi.org/10.1163/156855403765826874 VL - 10 IS - 2-3 SP - 173 EP - 223 PB - North-Holland CY - New York, NY AN - OPUS4-2706 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Friedrich, Jörg Florian A1 - Meyer-Plath, Asmus A1 - Retzko, Iris A1 - Kühn, Gerhard A1 - Mix, Renate ED - d'Agostino, R. T1 - Comparison of different plasmachemical processes for the formation of monotype functionalized polymer surfaces T2 - 16th International Symposium on Plasma Chemistry (ISPC-16) CY - Taormina, Italy DA - 2003-06-22 PY - 2003 IS - CD-ROM PB - Dep. of Chemistry, Univ. CY - Bari AN - OPUS4-2709 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kühn, Gerhard A1 - Retzko, Iris A1 - Lippitz, Andreas A1 - Unger, Wolfgang A1 - Friedrich, Jörg Florian T1 - Homofunctionalized polymer surfaces formed by selective plasma processes N2 - Several possibilities exist to produce a modified polymer surface with a high density of only one sort of functional group such as: (i) the plasma grafting of unfragmented monomer molecules and their polymerization forms OH, NH2, COOH groups, etc. in concentrations of approximately 25 groups per 100 C atoms; (ii) selective plasma bromination provides 10–25 CBr groups; (iii) the plasma oxidation of polymer surfaces in an O2 plasma followed by the chemical reduction of all O-containing groups to OH groups by diborane, vitride™ (Na complex) or LiAlH4 yields 9–14 OH groups per 100 carbon atoms; and (iv) the grafting of spacers with different endgroups onto OH or CBr groups produces 7–10 spacer molecules/100 C. This work was focused on the formation of thin plasma deposited polymer layers with a maximum of (homo)functional groups and with a minimum of chemical irregularities using the pulsed plasma technique. The monomers were allylalcohol, allylamine, acrylonitrile and acrylic acid. The further intent was to study the interactions of functional groups (OH, COOH, NH2) and deposited metals (Cr, Al, Ti). It was expected that more basic (NH2), weakly basic or neutral (OH) or more acidic (COOH) groups would show different interactions and chemical reactions with metal atoms. KW - Pulsed plasma polymerization KW - Functional groups KW - Long-term stability KW - Polymer-metal composites PY - 2001 U6 - https://doi.org/10.1016/S0257-8972(01)01056-8 SN - 0257-8972 VL - 142-144 SP - 494 EP - 500 PB - Elsevier Science CY - Lausanne AN - OPUS4-6971 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Friedrich, Jörg Florian A1 - Retzko, Iris A1 - Kühn, Gerhard A1 - Unger, Wolfgang A1 - Lippitz, Andreas T1 - Plasma polymers with chemically defined structures in contact with metals N2 - The retention of chemical structure and functional groups during plasma polymerization was investigated. Usually plasma polymer layers, prepared by a continuous wave radio-frequency plasma, are often chemically irregular in their structure and composition. To minimize these irregularities low wattages and the pulsed plasma technique were applied to avoid fragmentations. The first goal was to produce plasma polymers comprising double or triple bonds as precursors for electrically conducting polymers. Acetylene, ethylene, butadiene and polystyrene were used as monomers and deposited as thin polymer films by pulsed plasmas of low wattages. Styrene polymerization was strongly enhanced in the dark phase (plasma off) of a pulsed r.f. plasma caused by the reactivity of the vinyl-type double bond. This could be confirmed by a verification of a rather high chemical regularity of the film sample. The oxygen content of this film measured by X-ray photoelectron spectrometry (XPS) was in situ 0% and after 24 h exposure to air lower than 1%. Additionally, post-plasma oxidations of trapped radicals with air could be suppressed using NO gas as radical quencher. Such quenched plasma polymer layers were completely stable against oxidation for a number of weeks. During the low-wattage pulse plasma polymerization metal atoms were simultaneously or layer by layer evaporated into the growing layer and in situ measured by XPS. These metal atoms are acting as dopants. Here, Li, K, Mg and Cr were used at different concentrations providing electrical conductivity and magnetic properties for the film. KW - Pulsed plasma KW - Plasma polymerization KW - Doping with metal atoms KW - Encapsulation of nanoparticles PY - 2001 U6 - https://doi.org/10.1016/S0257-8972(01)01051-9 SN - 0257-8972 VL - 142-144 SP - 460 EP - 467 PB - Elsevier Science CY - Lausanne AN - OPUS4-6972 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Retzko, Iris A1 - Friedrich, Jörg Florian A1 - Kühn, Gerhard A1 - Lippitz, Andreas A1 - Unger, Wolfgang T1 - Eine neue Generation von alterungsbeständigen Plasmapolymeren mit definierter chemischer Struktur T2 - 8. Neues Dresdner Vakuumtechnisches Kolloquium (NDVaK) CY - Dresden, Deutschland DA - 2000-10-19 PY - 2000 VL - 8 SP - 110 EP - 114 CY - Dresden AN - OPUS4-6974 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Kühn, Gerhard A1 - Ghode, Archana A1 - Weidner, Steffen A1 - Retzko, Iris A1 - Unger, Wolfgang A1 - Friedrich, Jörg Florian ED - Mittal, K. L. T1 - Chemically well-defined surface functionalization of polyethylene and polypropylene by pulsed plasma modification followed by grafting of molecules T2 - 2nd International Symposium on Polymer Surface Modification: Relevance to Adhesion CY - Newark, NJ, USA DA - 1999-05-24 KW - Plasma modification KW - Chemical conversion of functional groups KW - Spacers KW - Polypropylene KW - Polyethylene PY - 2000 SN - 90-6764-327-0 VL - 2 SP - 45 EP - 64 PB - VSP CY - Utrecht AN - OPUS4-6975 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Friedrich, Jörg Florian A1 - Ghode, Archana A1 - Kühn, Gerhard A1 - Weidner, Steffen A1 - Geng, Shiming A1 - Retzko, Iris A1 - Unger, Wolfgang A1 - Lippitz, Andreas ED - Schindel-Bidinelli, E. T1 - Polymeroberflächenfunktionalisierungen im gepulsten Plasma mit nachfolgender chemischer Behandlung T2 - 14. Internationales Symposium Swissbonding ; 14. Internationaler Kongreß Swiss Bonding ; 14th Swiss Bonding 00 CY - Rapperswil, Schweiz DA - 2000-05-16 PY - 2000 SP - 31 EP - 44 PB - SWIBOTECH GmbH CY - Bülach AN - OPUS4-6980 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Friedrich, Jörg Florian A1 - Kühn, Gerhard A1 - Mix, Renate A1 - Retzko, Iris A1 - Gerstung, Vanessa A1 - Weidner, Steffen A1 - Schulze, Rolf-Dieter A1 - Unger, Wolfgang ED - Mittal, K. L. T1 - Plasma polymer adhesion promoters for metal-polymer systems T2 - 2nd International Symposium on Polyimides and Other High Temperature Polymers: Synthesis, Characterization and Applications CY - Newark, NJ, USA DA - 2001-12-03 KW - r.f. pulsed plasma KW - Plasma polymers with functional groups KW - Copolymers KW - Adhesion promoting interlayers KW - Metal-polymer systems PY - 2003 SN - 90-6764-378-5 VL - 2 SP - 359 EP - 388 PB - VSP CY - Utrecht AN - OPUS4-6967 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -