TY - GEN A1 - Friedrich, Jörg Florian A1 - Retzko, Iris A1 - Kühn, Gerhard A1 - Unger, Wolfgang A1 - Lippitz, Andreas ED - Mittal, K. T1 - Metal doped plasma polymer films T2 - 7th Symposium on Metallized Plastics CY - Newark, NJ, USA DA - 1999-12-02 KW - Plasma polymer KW - r.f. pulsed plasma KW - Conducting films KW - Metal-polymer interface PY - 2001 SN - 90-6764-340-8 VL - 7 SP - 117 EP - 142 PB - VSP CY - Utrecht AN - OPUS4-929 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Friedrich, Jörg Florian A1 - Kühn, Gerhard A1 - Schulz, Ulrich A1 - Jansen, Kirsten A1 - Möller, B. A1 - Fischer, S. T1 - Fluorination of Polymer Surfaces PY - 2002 SN - 0947-076X SN - 1522-2454 VL - 14 IS - 5 SP - 285 EP - 290 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-1466 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fritz, Andreas A1 - Schönhals, Andreas A1 - Mix, Renate A1 - Kühn, Gerhard A1 - Friedrich, Jörg Florian T1 - Dielectric spectroscopy of plasma copolymers of the system allyl alcohol/alkene N2 - Polymers synthesized with plasma techniques are very interesting materials for electronic, optic, and bio compatible applications. Thin films of plasma polymers shows a good adhesion to metals, glass, or other polymers. But the supramolecular structure, the durability, and the chemical and mechanical behavior of these polymers is poorly understood. Therefore dielectric investigations are carried out to study the dynamic behavior of the plasma polymers. As polymer system allyl alcohol/alkene is chosen to get polymers with a defined concentration of hydroxyl groups. The dielectric investigations shows several relaxation processes and a dependency of the dielectric parameters from the ratio of allyl alcohol in the polymer is observed. This results indicated that the alkene monomers were assembled continuous into the polymer matrix. T2 - Frühjahrstagung des Arbeitskreises Festkörperphysik bei der DPG CY - Regensburg, Deutschland DA - 2002-03-11 PY - 2002 UR - http://old.dpg-tagungen.de/archive/2002/cpp_4.html SN - 0420-0195 SN - 0372-5448 SN - 0343-9216 IS - CPP 4.7 SP - 424 CY - Bad Honnef AN - OPUS4-2057 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fritz, Andreas A1 - Schönhals, Andreas A1 - Mix, Renate A1 - Kühn, Gerhard A1 - Friedrich, Jörg Florian T1 - Dielectric spectroscopy of plasma copolymers or the system allyl alcohol/alkene T2 - Frühjahrstagung des Arbeitskreises Festkörperphysik bei der DPG CY - Regensburg, Germany DA - 2002-03-11 PY - 2002 SN - 0420-0195 SN - 0372-5448 SN - 0343-9216 IS - CPP 4.7 SP - 424 CY - Bad Honnef AN - OPUS4-2058 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Kühn, Gerhard A1 - Mix, Renate A1 - Friedrich, Jörg Florian T1 - Surface Controlled Fire Retardancy of Polymers Using Plasma Polymerisation N2 - Communication: Fire retardant coatings are deposited on polyamide-66 using plasma polymerisation. Chemical composition and thickness of deposits are adjusted varying the plasma treatment based on hexamethydisiloxane mixed with oxygen. The fire retardancy performances are evaluated using a cone calorimeter. The correlation between fire retardancy and thickness as well as chemical composition is discussed. KW - Cone calorimeter KW - Flame retardance KW - Heat release KW - Plasma polymerization KW - Polyamides PY - 2002 U6 - https://doi.org/10.1002/1439-2054(20020901)287:9<579::AID-MAME579>3.0.CO;2-6 SN - 1438-7492 SN - 1439-2054 VL - 287 IS - 9 SP - 579 EP - 582 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-1537 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer-Plath, Asmus A1 - Mix, Renate A1 - Kühn, Gerhard A1 - Friedrich, Jörg Florian ED - d'Agostino, R. T1 - The Potential of Surface Radicals for Polymer Functionalization T2 - 16th International Symposium on Plasma Chemistry (ISPC-16) CY - Taormina, Italy DA - 2003-06-22 PY - 2003 IS - CD-ROM PB - Dep. of Chemistry, Univ. CY - Bari AN - OPUS4-2612 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Friedrich, Jörg Florian A1 - Mix, Renate A1 - Kühn, Gerhard T1 - Functional groups bearing plasma homo and copolymer layers as adhesion promoters in metal-polymer composites N2 - Functional groups bearing monomers were pulsed plasma polymerised with a degree of retained functional groups of 55–91%. The following functional groups could be produced at a maximum of: 30 OH, 18 NH2, and 24 COOH per 100 C atoms. A plasma-initiated radical copolymerisation could also be realised using the functional group bearing monomers as a source of functionalities, olefins as ‘chain-extenders’ and dienes as ‘chemical cross-linkers’. The peel strengths of Al layers on such plasma polymers were correlated to the type and density of functional groups. KW - Functional groups KW - Adhesion promoters KW - Metal-polymer composites PY - 2003 U6 - https://doi.org/10.1016/S0257-8972(03)00350-5 SN - 0257-8972 VL - 174-175 SP - 811 EP - 815 PB - Elsevier Science CY - Lausanne AN - OPUS4-2703 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Friedrich, Jörg Florian A1 - Kühn, Gerhard A1 - Mix, Renate A1 - Fritz, Andreas A1 - Schönhals, Andreas T1 - Polymer surface modification with monofunctional groups of variable types and densities N2 - The retention of chemical structure and functional groups during pulsed plasma polymerization was used for producing adhesion-promoting plasma polymer layers with high concentrations of exclusively one kind of functional groups, such as OH, NH2, or COOH. The maximum content of functional groups was 31 OH using allyl alcohol, 18 NH2 using allylamine, or 24 COOH per 100 C atoms using acrylic acid. To vary the density of functional groups, chemical co-polymerization with ethylene as 'chain-extending' co-monomer, or butadiene as 'chemical crosslinker' was initiated in the pulsed plasma. The composition of these co-polymers was investigated by XPS and IR spectroscopy. The concentrations of functional groups were measured by derivatizing with fluorine-containing reagents and using XPS. A set of plasma parameters was found to be a good compromise between a high number of functional groups and complete insolubility in water, ethanol or THF,which is needed for further chemical processing. Here, these monotype-functionalized surfaces were used in metal-polymer systems as adhesion-promoting interlayers to examine the influence of type and density of functional groups on adhesion. As expected, COOH- and OH-group-terminated interlayers showed maximum peel strengths to evaporated aluminium layers. The adhesion increased linearly with the number of OH groups to a maximum at about 27 OH per 100 C atoms. Higher concentrations of OH groups did not increase the peel strength further. KW - Co-polymers KW - Adhesion-promoting interlayers KW - Metal-polymer systems PY - 2003 U6 - https://doi.org/10.1163/156856103322396695 SN - 0169-4243 SN - 1568-5616 VL - 17 IS - 12 SP - 1591 EP - 1617 PB - VNU Science Press CY - Utrecht AN - OPUS4-2704 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Friedrich, Jörg Florian A1 - Unger, Wolfgang A1 - Lippitz, Andreas A1 - Koprinarov, Ivaylo A1 - Ghode, Archana A1 - Geng, Sh. A1 - Kühn, Gerhard T1 - Plasma-based introduction of monosort functional groups of different type and density onto polymer surfaces. Part 1: Behaviour of polymers exposed to oxygen plasma N2 - Several approaches were investigated to produce monosort functionalized polymer surfaces with a high density and homogeneity of functional groups: (i) Plasma oxidation followed by wet-chemical reduction, (ii) formation of radicals and grafting on of functional group carrying molecules, (iii) plasma bromination followed by (iv) Williamson or Gabriel-like synthesis of spacer molecules, and (v) a pulsed plasma polymerization of functional groups bearing monomers or (vi) their copolymerisation with other comonomers. The formation of hydroxyl (OH), primary amino (NH2), and carboxyl (COOH) groups was studied in detail. The oxygen plasma treatment (i) in a low-pressure non-isothermal glow discharge results in the formation of a wide variety of O functional groups, polymer degradation and crosslinking. Low power densities and short exposure times (0.1 to 2 s) are required to functionalize a surface while preserving the original polymer structure. Carbonate, ester, and aromatic groups are rapidly degraded by an oxygen plasma treatment leading to scissions of polymer backbones and loss in molecular weight. Also the formation of macrocycles and C=C bonds was observed in a region of around 4 nm in depth. The investigated polymers could be classified by their degradation behaviour on exposure to the oxygen plasma.___TAGSTART___BR___TAGEND___ In order to maximize the process selectivity for OH groups, the variety of oxygen functionalities formed by the oxygen plasma was wet-chemically reduced by diborane, vitridetrade (Na complex), and LiAlH4. Typical yields were 9 to 14 OH groups per 100 carbon atoms.___TAGSTART___BR___TAGEND___ Plasma bromination (iii) (40 Br per 100 C atoms) of polymers, followed by grafting of spacer molecules (iv), has been proved to be a highly selective reaction.___TAGSTART___BR___TAGEND___ Another way to produce high densities of monosort functionalities was the pulsed plasma polymerization of functional group bearing monomers such as allylamine, allylalcohol or acrylic acid (v). The retention of chemical structure and functional groups during plasma polymerization was achieved by using low power densities and the pulsed plasma technique. The maximum yields were 30 OH, 18 NH2, and 24 COOH groups per 100 C atoms. To vary the density of functional groups a chemical copolymerization with ''chain-extending'' comonomers such as butadiene and ethylene was initiated in the pulsed plasma (vi). Additionally, the often-observed post-plasma oxidations of such layers initiated by reaction of trapped radicals with oxygen from the air were successfully suppressed by using NO gas as radical quencher. PY - 2003 U6 - https://doi.org/10.1163/156855403765826865 VL - 10 IS - 2-3 SP - 139 EP - 171 PB - North-Holland CY - New York, NY AN - OPUS4-2705 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Friedrich, Jörg Florian A1 - Mix, Renate A1 - Kühn, Gerhard A1 - Retzko, Iris A1 - Schönhals, Andreas A1 - Unger, Wolfgang T1 - Plasma-based introduction of monosort functional groups of different type and density onto polymer surfaces. Part 2: Pulsed plasma polymerization N2 - This new functionalization method consists of the deposition of very thin plasma polymer layers (20 to 100 nm) of functional group bearing monomers in pulsed plasma. With allylalcohol, a maximum of 30 OH groups per 100 C atoms was measured with a selectivity of about 90% and a significant stability at long-time exposure to air. Allylamine was used to produce primary amino groups, with a maximum of 18 NH2 groups per 100 C atoms. Side reactions were observed during the storage in air, such as oxidation of the amino groups. Carboxylic groups could be produced using acrylic acid with a maximum concentration of 24 COOH groups per 100 C atoms. The most prominent side reaction was the decarbonylation/ decarboxylation of the acid group during plasma deposition.___TAGSTART___BR___TAGEND___ The variation of the density of functional groups using the pulsed-plasma polymerization of functional-group-bearing monomers was possible by the chemically-initiated radical copolymerization with either a chain-extending monomer, such as ethylene, or a cross linker, such as butadiene, in plasma. The density of functional groups could be adjusted continuously (0 to 30 OH, 0 to 18 NH2 and 0 to 24 COOH groups per 100 C atoms).___TAGSTART___BR___TAGEND___ The successful application of these densely functionalized polymer surfaces for producing biocompatible surfaces and for use in metal–polymer composites is proposed. KW - Pulsed plasma polymerization KW - Plasma-initiated copolymerization KW - Charcterization of homo- and copolymers PY - 2003 U6 - https://doi.org/10.1163/156855403765826874 VL - 10 IS - 2-3 SP - 173 EP - 223 PB - North-Holland CY - New York, NY AN - OPUS4-2706 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -