TY - JOUR A1 - Wettmarshausen, Sascha A1 - Kühn, Gerhard A1 - Hidde, Gundula A1 - Mittmann, Hans-Ulrich A1 - Friedrich, Jörg Florian T1 - Plasmabromination - the Selective Way to Monotype Functionalized Polymer Surfaces N2 - In contrast to other plasma modification processes of polymer surfaces, the bromination is very selective and shows a high yield in C—Br groups. The most convenient bromination process was found using bromoform, which was thus preferred to elemental bromine, allyl bromide, vinyl bromide or tert-butylbromide. The bromoform process give yields in C—Br up to 40 C—Br or more, with only 2-3% co-introduction of O-functionalities whereas allyl bromide results in yields of about 20 C—Br and more, but in more than 10% oxygen-containing by-products. C—Br groups serve as anchoring points for grafting of molecules, oligomers and pre-polymers of diole or diamine character. KW - Functional groups KW - Grafting KW - Plasma bromination KW - Polymer surfaces KW - Selective plasma process KW - Spacer PY - 2007 U6 - https://doi.org/10.1002/ppap.200700019 SN - 1612-8850 SN - 1612-8869 VL - 4 IS - 9 SP - 832 EP - 839 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-16209 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kühn, Gerhard A1 - Retzko, Iris A1 - Lippitz, Andreas A1 - Unger, Wolfgang A1 - Friedrich, Jörg Florian T1 - Homofunctionalized polymer surfaces formed by selective plasma processes N2 - Several possibilities exist to produce a modified polymer surface with a high density of only one sort of functional group such as: (i) the plasma grafting of unfragmented monomer molecules and their polymerization forms OH, NH2, COOH groups, etc. in concentrations of approximately 25 groups per 100 C atoms; (ii) selective plasma bromination provides 10–25 CBr groups; (iii) the plasma oxidation of polymer surfaces in an O2 plasma followed by the chemical reduction of all O-containing groups to OH groups by diborane, vitride™ (Na complex) or LiAlH4 yields 9–14 OH groups per 100 carbon atoms; and (iv) the grafting of spacers with different endgroups onto OH or CBr groups produces 7–10 spacer molecules/100 C. This work was focused on the formation of thin plasma deposited polymer layers with a maximum of (homo)functional groups and with a minimum of chemical irregularities using the pulsed plasma technique. The monomers were allylalcohol, allylamine, acrylonitrile and acrylic acid. The further intent was to study the interactions of functional groups (OH, COOH, NH2) and deposited metals (Cr, Al, Ti). It was expected that more basic (NH2), weakly basic or neutral (OH) or more acidic (COOH) groups would show different interactions and chemical reactions with metal atoms. KW - Pulsed plasma polymerization KW - Functional groups KW - Long-term stability KW - Polymer-metal composites PY - 2001 U6 - https://doi.org/10.1016/S0257-8972(01)01056-8 SN - 0257-8972 VL - 142-144 SP - 494 EP - 500 PB - Elsevier Science CY - Lausanne AN - OPUS4-6971 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Friedrich, Jörg Florian A1 - Mix, Renate A1 - Kühn, Gerhard T1 - Functional groups bearing plasma homo and copolymer layers as adhesion promoters in metal-polymer composites N2 - Functional groups bearing monomers were pulsed plasma polymerised with a degree of retained functional groups of 55–91%. The following functional groups could be produced at a maximum of: 30 OH, 18 NH2, and 24 COOH per 100 C atoms. A plasma-initiated radical copolymerisation could also be realised using the functional group bearing monomers as a source of functionalities, olefins as ‘chain-extenders’ and dienes as ‘chemical cross-linkers’. The peel strengths of Al layers on such plasma polymers were correlated to the type and density of functional groups. KW - Functional groups KW - Adhesion promoters KW - Metal-polymer composites PY - 2003 U6 - https://doi.org/10.1016/S0257-8972(03)00350-5 SN - 0257-8972 VL - 174-175 SP - 811 EP - 815 PB - Elsevier Science CY - Lausanne AN - OPUS4-2703 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -