TY - JOUR A1 - Friedrich, Jörg Florian A1 - Mix, Renate A1 - Kühn, Gerhard T1 - Functional groups bearing plasma homo and copolymer layers as adhesion promoters in metal-polymer composites N2 - Functional groups bearing monomers were pulsed plasma polymerised with a degree of retained functional groups of 55–91%. The following functional groups could be produced at a maximum of: 30 OH, 18 NH2, and 24 COOH per 100 C atoms. A plasma-initiated radical copolymerisation could also be realised using the functional group bearing monomers as a source of functionalities, olefins as ‘chain-extenders’ and dienes as ‘chemical cross-linkers’. The peel strengths of Al layers on such plasma polymers were correlated to the type and density of functional groups. KW - Functional groups KW - Adhesion promoters KW - Metal-polymer composites PY - 2003 DO - https://doi.org/10.1016/S0257-8972(03)00350-5 SN - 0257-8972 VL - 174-175 SP - 811 EP - 815 PB - Elsevier Science CY - Lausanne AN - OPUS4-2703 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Friedrich, Jörg Florian A1 - Kühn, Gerhard A1 - Mix, Renate A1 - Fritz, Andreas A1 - Schönhals, Andreas T1 - Polymer surface modification with monofunctional groups of variable types and densities N2 - The retention of chemical structure and functional groups during pulsed plasma polymerization was used for producing adhesion-promoting plasma polymer layers with high concentrations of exclusively one kind of functional groups, such as OH, NH2, or COOH. The maximum content of functional groups was 31 OH using allyl alcohol, 18 NH2 using allylamine, or 24 COOH per 100 C atoms using acrylic acid. To vary the density of functional groups, chemical co-polymerization with ethylene as 'chain-extending' co-monomer, or butadiene as 'chemical crosslinker' was initiated in the pulsed plasma. The composition of these co-polymers was investigated by XPS and IR spectroscopy. The concentrations of functional groups were measured by derivatizing with fluorine-containing reagents and using XPS. A set of plasma parameters was found to be a good compromise between a high number of functional groups and complete insolubility in water, ethanol or THF,which is needed for further chemical processing. Here, these monotype-functionalized surfaces were used in metal-polymer systems as adhesion-promoting interlayers to examine the influence of type and density of functional groups on adhesion. As expected, COOH- and OH-group-terminated interlayers showed maximum peel strengths to evaporated aluminium layers. The adhesion increased linearly with the number of OH groups to a maximum at about 27 OH per 100 C atoms. Higher concentrations of OH groups did not increase the peel strength further. KW - Co-polymers KW - Adhesion-promoting interlayers KW - Metal-polymer systems PY - 2003 DO - https://doi.org/10.1163/156856103322396695 SN - 0169-4243 SN - 1568-5616 VL - 17 IS - 12 SP - 1591 EP - 1617 PB - VNU Science Press CY - Utrecht AN - OPUS4-2704 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Friedrich, Jörg Florian A1 - Unger, Wolfgang A1 - Lippitz, Andreas A1 - Koprinarov, Ivaylo A1 - Ghode, Archana A1 - Geng, Sh. A1 - Kühn, Gerhard T1 - Plasma-based introduction of monosort functional groups of different type and density onto polymer surfaces. Part 1: Behaviour of polymers exposed to oxygen plasma N2 - Several approaches were investigated to produce monosort functionalized polymer surfaces with a high density and homogeneity of functional groups: (i) Plasma oxidation followed by wet-chemical reduction, (ii) formation of radicals and grafting on of functional group carrying molecules, (iii) plasma bromination followed by (iv) Williamson or Gabriel-like synthesis of spacer molecules, and (v) a pulsed plasma polymerization of functional groups bearing monomers or (vi) their copolymerisation with other comonomers. The formation of hydroxyl (OH), primary amino (NH2), and carboxyl (COOH) groups was studied in detail. The oxygen plasma treatment (i) in a low-pressure non-isothermal glow discharge results in the formation of a wide variety of O functional groups, polymer degradation and crosslinking. Low power densities and short exposure times (0.1 to 2 s) are required to functionalize a surface while preserving the original polymer structure. Carbonate, ester, and aromatic groups are rapidly degraded by an oxygen plasma treatment leading to scissions of polymer backbones and loss in molecular weight. Also the formation of macrocycles and C=C bonds was observed in a region of around 4 nm in depth. The investigated polymers could be classified by their degradation behaviour on exposure to the oxygen plasma.___TAGSTART___BR___TAGEND___ In order to maximize the process selectivity for OH groups, the variety of oxygen functionalities formed by the oxygen plasma was wet-chemically reduced by diborane, vitridetrade (Na complex), and LiAlH4. Typical yields were 9 to 14 OH groups per 100 carbon atoms.___TAGSTART___BR___TAGEND___ Plasma bromination (iii) (40 Br per 100 C atoms) of polymers, followed by grafting of spacer molecules (iv), has been proved to be a highly selective reaction.___TAGSTART___BR___TAGEND___ Another way to produce high densities of monosort functionalities was the pulsed plasma polymerization of functional group bearing monomers such as allylamine, allylalcohol or acrylic acid (v). The retention of chemical structure and functional groups during plasma polymerization was achieved by using low power densities and the pulsed plasma technique. The maximum yields were 30 OH, 18 NH2, and 24 COOH groups per 100 C atoms. To vary the density of functional groups a chemical copolymerization with ''chain-extending'' comonomers such as butadiene and ethylene was initiated in the pulsed plasma (vi). Additionally, the often-observed post-plasma oxidations of such layers initiated by reaction of trapped radicals with oxygen from the air were successfully suppressed by using NO gas as radical quencher. PY - 2003 DO - https://doi.org/10.1163/156855403765826865 VL - 10 IS - 2-3 SP - 139 EP - 171 PB - North-Holland CY - New York, NY AN - OPUS4-2705 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Friedrich, Jörg Florian A1 - Mix, Renate A1 - Kühn, Gerhard A1 - Retzko, Iris A1 - Schönhals, Andreas A1 - Unger, Wolfgang T1 - Plasma-based introduction of monosort functional groups of different type and density onto polymer surfaces. Part 2: Pulsed plasma polymerization N2 - This new functionalization method consists of the deposition of very thin plasma polymer layers (20 to 100 nm) of functional group bearing monomers in pulsed plasma. With allylalcohol, a maximum of 30 OH groups per 100 C atoms was measured with a selectivity of about 90% and a significant stability at long-time exposure to air. Allylamine was used to produce primary amino groups, with a maximum of 18 NH2 groups per 100 C atoms. Side reactions were observed during the storage in air, such as oxidation of the amino groups. Carboxylic groups could be produced using acrylic acid with a maximum concentration of 24 COOH groups per 100 C atoms. The most prominent side reaction was the decarbonylation/ decarboxylation of the acid group during plasma deposition.___TAGSTART___BR___TAGEND___ The variation of the density of functional groups using the pulsed-plasma polymerization of functional-group-bearing monomers was possible by the chemically-initiated radical copolymerization with either a chain-extending monomer, such as ethylene, or a cross linker, such as butadiene, in plasma. The density of functional groups could be adjusted continuously (0 to 30 OH, 0 to 18 NH2 and 0 to 24 COOH groups per 100 C atoms).___TAGSTART___BR___TAGEND___ The successful application of these densely functionalized polymer surfaces for producing biocompatible surfaces and for use in metal–polymer composites is proposed. KW - Pulsed plasma polymerization KW - Plasma-initiated copolymerization KW - Charcterization of homo- and copolymers PY - 2003 DO - https://doi.org/10.1163/156855403765826874 VL - 10 IS - 2-3 SP - 173 EP - 223 PB - North-Holland CY - New York, NY AN - OPUS4-2706 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Friedrich, Jörg Florian A1 - Kühn, Gerhard A1 - Schulz, Ulrich A1 - Jansen, Kirsten A1 - Bertus, Angela A1 - Fischer, S. A1 - Möller, B. T1 - Characterization of fluorinated polyethylene surfaces N2 - Polyethylene foils, used as greenhouse foils stabilized with various types of sterically hindered amine light stabilizers (HALS), showed an extraordinary prolonged lifetime on exposure to natural or artificial weathering if a gas-phase fluorination under low-pressure conditions was applied. The fluorination was performed using F2/N2 mixtures and provided ca. 50 F/100 C (fluorination degree ap25%). The lifetimes of fluorinated PE foils on exposure to artificial or natural weathering were increased at least by a factor of 2-4 as measured in terms of tensile strength and elongation at break. KW - Gas phase fluorination of PE KW - Fluorination kinetics KW - Weathering PY - 2003 DO - https://doi.org/10.1163/156856103322113832 SN - 0169-4243 SN - 1568-5616 VL - 17 IS - 8 SP - 1127 EP - 1143 PB - VNU Science Press CY - Utrecht AN - OPUS4-2707 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schulze, Rolf-Dieter A1 - Mix, Renate A1 - Kühn, Gerhard A1 - Friedrich, Jörg Florian ED - d'Agostino, R. T1 - Pulsed plasma initiated homo and copolymerisation - deposition rates and plasma diagnostics in dependence on the pulse length and frequency T2 - 16th International Symposium on Plasma Chemistry (ISPC-16) CY - Taormina, Italy DA - 2003-06-22 PY - 2003 IS - CD-ROM PB - Dep. of Chemistry, Univ. CY - Bari AN - OPUS4-2708 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Friedrich, Jörg Florian A1 - Meyer-Plath, Asmus A1 - Retzko, Iris A1 - Kühn, Gerhard A1 - Mix, Renate ED - d'Agostino, R. T1 - Comparison of different plasmachemical processes for the formation of monotype functionalized polymer surfaces T2 - 16th International Symposium on Plasma Chemistry (ISPC-16) CY - Taormina, Italy DA - 2003-06-22 PY - 2003 IS - CD-ROM PB - Dep. of Chemistry, Univ. CY - Bari AN - OPUS4-2709 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Friedrich, Jörg Florian A1 - Schönhals, Andreas A1 - Fritz, Andreas A1 - Mix, Renate A1 - Kühn, Gerhard ED - d'Agostino, R. T1 - Pulsed plasma initiated homo and copolymerisation - characterization of thin plasma polymer layers by dielectric relaxation spectroscopy T2 - 16th International Symposium on Plasma Chemistry (ISPC-16) CY - Taormina, Italy DA - 2003-06-22 PY - 2003 IS - CD-ROM PB - Dep. of Chemistry, Univ. CY - Bari AN - OPUS4-2711 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Friedrich, Jörg Florian A1 - Kühn, Gerhard A1 - Mix, Renate ED - d'Agostino, R. T1 - Polymer surface modification with monofunctional groups of different type and density T2 - 16th International Symposium on Plasma Chemistry (ISPC-16) CY - Taormina, Italy DA - 2003-06-22 PY - 2003 IS - CD-ROM PB - Dep. of Chemistry, Univ. CY - Bari AN - OPUS4-2712 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Friedrich, Jörg Florian A1 - Kühn, Gerhard A1 - Mix, Renate A1 - Unger, Wolfgang T1 - Formation of Plasma Polymer Layers with Functional Groups of Different Type and Density at Polymer Surfaces and their Interaction with Al Atoms N2 - Monotype functionalizations with different types of functional groups (OH, NH2, COOH) on polypropylene and poly(tetrafluoroethylene) surfaces were synthesized using pulsed plasma-initiated homo- or copolymerization of functional group-carrying monomers. The maximum concentrations of functional groups were 31 OH, 18 NH2 or 24 COOH groups per 100 C atoms using allyl alcohol, allylamine or acrylic acid respectively as the monomer. The measured peel strengths of aluminium deposits increased linearly with the concentration of functional groups. Near the maximum concentration of OH (>27 OH/100 C atoms) or at moderate concentrations of COOH groups (>10 COOH/100 C atoms), constant (maximum) peel strengths were measured due to the mechanical collapse of one component in the composite (cohesive failure). Interface failures in Al-PP composites were found with COOH, NH2 and OH groups and cohesive failures were seen when higher concentrations of COOH groups were applied (>10 COOH/100 C atoms). PY - 2004 DO - https://doi.org/10.1002/ppap.200400008 SN - 1612-8850 SN - 1612-8869 VL - 1 IS - 1 SP - 28 EP - 50 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-4707 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Friedrich, Jörg Florian A1 - Mix, Renate A1 - Kühn, Gerhard T1 - Contribution of chemical interactions to the adhesion between aluminium and functional groups of different (mono-) type and density at polymer surfaces T2 - 7th European Adhesion Conference (EURADH 2004) CY - Freiburg im Breisgau, Germany DA - 2004-09-07 PY - 2004 VL - 1 SP - 138 EP - 143 PB - DECHEMA CY - Frankfurt am Main AN - OPUS4-4680 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Friedrich, Jörg Florian A1 - Kühn, Gerhard A1 - Unger, Wolfgang A1 - Mix, Renate ED - Radusch, H.-J. ED - Fiedler, L. T1 - Plasma-initiated homo and copolymerisation for modifying polymer surfaces with funtional groups of different type and density T2 - Internationale Fachtagung Polymerwerkstoffe ; P-2002 CY - Halle (Saale), Germany DA - 2002-09-25 PY - 2002 SN - 3-86010-656-2 SP - 534 EP - 539 PB - Martin-Luther-Univ. Halle-Wittenberg CY - Halle (Saale) AN - OPUS4-6969 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Friedrich, Jörg Florian A1 - Mix, Renate A1 - Kühn, Gerhard A1 - Unger, Wolfgang T1 - Functional groups bearing plasma homo and copolymer layers as adhesion promoters in metal-polymer composites T2 - 10. Neues Dresdner Vakuumtechnisches Kolloquium (NDVaK) CY - Dresden, Germany DA - 2002-10-17 PY - 2002 SP - 6 EP - 15 PB - DTVa CY - Dresden AN - OPUS4-6970 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kühn, Gerhard A1 - Retzko, Iris A1 - Lippitz, Andreas A1 - Unger, Wolfgang A1 - Friedrich, Jörg Florian T1 - Homofunctionalized polymer surfaces formed by selective plasma processes N2 - Several possibilities exist to produce a modified polymer surface with a high density of only one sort of functional group such as: (i) the plasma grafting of unfragmented monomer molecules and their polymerization forms OH, NH2, COOH groups, etc. in concentrations of approximately 25 groups per 100 C atoms; (ii) selective plasma bromination provides 10–25 CBr groups; (iii) the plasma oxidation of polymer surfaces in an O2 plasma followed by the chemical reduction of all O-containing groups to OH groups by diborane, vitride™ (Na complex) or LiAlH4 yields 9–14 OH groups per 100 carbon atoms; and (iv) the grafting of spacers with different endgroups onto OH or CBr groups produces 7–10 spacer molecules/100 C. This work was focused on the formation of thin plasma deposited polymer layers with a maximum of (homo)functional groups and with a minimum of chemical irregularities using the pulsed plasma technique. The monomers were allylalcohol, allylamine, acrylonitrile and acrylic acid. The further intent was to study the interactions of functional groups (OH, COOH, NH2) and deposited metals (Cr, Al, Ti). It was expected that more basic (NH2), weakly basic or neutral (OH) or more acidic (COOH) groups would show different interactions and chemical reactions with metal atoms. KW - Pulsed plasma polymerization KW - Functional groups KW - Long-term stability KW - Polymer-metal composites PY - 2001 DO - https://doi.org/10.1016/S0257-8972(01)01056-8 SN - 0257-8972 VL - 142-144 SP - 494 EP - 500 PB - Elsevier Science CY - Lausanne AN - OPUS4-6971 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Friedrich, Jörg Florian A1 - Retzko, Iris A1 - Kühn, Gerhard A1 - Unger, Wolfgang A1 - Lippitz, Andreas T1 - Plasma polymers with chemically defined structures in contact with metals N2 - The retention of chemical structure and functional groups during plasma polymerization was investigated. Usually plasma polymer layers, prepared by a continuous wave radio-frequency plasma, are often chemically irregular in their structure and composition. To minimize these irregularities low wattages and the pulsed plasma technique were applied to avoid fragmentations. The first goal was to produce plasma polymers comprising double or triple bonds as precursors for electrically conducting polymers. Acetylene, ethylene, butadiene and polystyrene were used as monomers and deposited as thin polymer films by pulsed plasmas of low wattages. Styrene polymerization was strongly enhanced in the dark phase (plasma off) of a pulsed r.f. plasma caused by the reactivity of the vinyl-type double bond. This could be confirmed by a verification of a rather high chemical regularity of the film sample. The oxygen content of this film measured by X-ray photoelectron spectrometry (XPS) was in situ 0% and after 24 h exposure to air lower than 1%. Additionally, post-plasma oxidations of trapped radicals with air could be suppressed using NO gas as radical quencher. Such quenched plasma polymer layers were completely stable against oxidation for a number of weeks. During the low-wattage pulse plasma polymerization metal atoms were simultaneously or layer by layer evaporated into the growing layer and in situ measured by XPS. These metal atoms are acting as dopants. Here, Li, K, Mg and Cr were used at different concentrations providing electrical conductivity and magnetic properties for the film. KW - Pulsed plasma KW - Plasma polymerization KW - Doping with metal atoms KW - Encapsulation of nanoparticles PY - 2001 DO - https://doi.org/10.1016/S0257-8972(01)01051-9 SN - 0257-8972 VL - 142-144 SP - 460 EP - 467 PB - Elsevier Science CY - Lausanne AN - OPUS4-6972 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Friedrich, Jörg Florian A1 - Möller, B. A1 - Kühn, Gerhard A1 - Unger, Wolfgang A1 - Krüger, P. T1 - Improvement of adhesion properties of polymers by producing oxyfluorinated surfaces PY - 2001 SN - 0016-4232 VL - 92 IS - 5 SP - 1334 EP - 1444 PB - Leuze CY - Saulgau, Württ. AN - OPUS4-6973 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Retzko, Iris A1 - Friedrich, Jörg Florian A1 - Kühn, Gerhard A1 - Lippitz, Andreas A1 - Unger, Wolfgang T1 - Eine neue Generation von alterungsbeständigen Plasmapolymeren mit definierter chemischer Struktur T2 - 8. Neues Dresdner Vakuumtechnisches Kolloquium (NDVaK) CY - Dresden, Deutschland DA - 2000-10-19 PY - 2000 VL - 8 SP - 110 EP - 114 CY - Dresden AN - OPUS4-6974 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Friedrich, Jörg Florian A1 - Kühn, Gerhard A1 - Mix, Renate ED - D'Agostino, R. T1 - Polymer Surface Modification with Monofunctional Groups of Different Type and Density T2 - 16th International Symposium on Plasma Chemistry ; ISPC-16 CY - Taormina, Italy DA - 2003-06-22 PY - 2005 SN - 3-527-40487-2 SP - 3 EP - 21 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-7019 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Friedrich, Jörg Florian A1 - Kühn, Gerhard A1 - Mix, Renate T1 - Tailoring of Polymer Surfaces with Different Monotype Functional Groups of Variable Density Using Chemical and Plasma Chemical Processes T2 - 10th Dresden Polymer Discussion: Characterization of Polymer Surfaces and Thin Films CY - Meißen, Germany DA - 2005-04-10 KW - Plasma modification KW - Introduction of functional groups KW - Reactions at polymer surfaces PY - 2005 SP - 34 EP - 49 PB - Leibniz-Institut für Polymerforschung Dresden CY - Meißen AN - OPUS4-7332 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Friedrich, Jörg Florian A1 - Schulz, Ulrich A1 - Kühn, Gerhard A1 - Erdmann, Jessica A1 - Möller, B. T1 - Glanzerhaltung von Autolacken - Verbessern der Lebensdauer eines 2K-Klarlacks durch Gasphasen-Fluorierung PY - 1999 SN - 0025-5300 VL - 41 SP - 375 EP - 378 PB - Carl Hanser Verlag CY - München AN - OPUS4-7284 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -