TY - JOUR A1 - Müller, P. A1 - Mielke, Johannes A1 - Hodoroaba, Vasile-Dan A1 - Kägi, R. A1 - Ryner, M. T1 - Assessment of different electron microscopy techniques for particle size quantification of potential nanomaterials N2 - While nano-scaled intermediate and consumer products are omnipresent in many industries, one challenge consists in the development of methods that reliably identify, characterize and quantify nanomaterials both as a substance and in various matrices. For product registration purposes, the European Commission proposed a definition for nanomaterial which requires a quantitative size determination of the primary particles in a sample down to sizes of 1 nm. According to a material is defined as nano if 50% of the primary particles are observed to comprise a smallest dimension <100 nm. The NanoDefine project was set up to develop and validate a robust, readily implementable and cost-effective measurement approach to obtain a quantitative particle size distribution and to distinguish between nano and non-nano materials according to the definition Among the available particle sizing techniques, electron microscopy was found to be one option meeting most of the requirements of the regulation. However, the use of electron microscopy for particle sizing is often limited by cost per sample, availability in industry, particle agglomeration/aggregation, extremely broad size distributions, 2D materials and operator bias in case of manual evaluation. PY - 2015 U6 - https://doi.org/10.1017/S1431927615012799 SN - 1431-9276 SN - 1435-8115 VL - 21 IS - Suppl. 3 SP - Paper 1200, 2403 EP - 2404 PB - Cambridge University Press CY - New York, NY AN - OPUS4-34922 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -