TY - CONF A1 - Jonietz, Florian A1 - Maierhofer, Christiane A1 - Myrach, Philipp A1 - Illerhaus, Bernhard A1 - Meinel, Dietmar A1 - Richter, U. A1 - Mischke, R. T1 - Characterisation of pores in high pressure die cast aluminium using active thermography and computed tomography T2 - Review of Progress in Quantitative Nondestructive Evaluation CY - Minneapolis (USA) DA - 2015-07-27 PY - 2015 AN - OPUS4-34484 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jonietz, Florian A1 - Ziegler, Mathias A1 - Myrach, Philipp A1 - Suwala, H. A1 - Rethmeier, Michael T1 - Untersuchung von Punktschweißverbindungen mit aktiver Thermografie N2 - Widerstandspunktschweißen ist insbesondere im Automobilbau eine der wichtigsten Fügetechniken. Bislang erfolgt die Qualitätssicherung überwiegend durch stichprobenartige zerstörende Prüfung. Eine zerstörungsfreie Prüftechnik würde neben der Reduzierung der Prüfkosten auch eine Optimierung des Punktschweißverfahrens bedeuten, da prinzipiell jeder Schweißpunkt geprüft werden könnte und somit auch eine Reduzierung der Anzahl der Schweißpunkte möglich ist. Es wird ein Verfahren vorgestellt, bei dem die Punktschweißverbindung zwischen zwei Stahlblechen optisch auf einer Blechseite mittels Laser oder Blitzlicht erwärmt wird. Die aufgeschmolzene Zone, die sogenannte Schweißlinse, stellt dabei neben der mechanischen Verbindung auch eine Wärmebrücke zwischen den beiden verschweißten Blechen dar, die bei diesem Verfahren ausgenutzt wird. Durch den verbesserten thermischen Kontakt zwischen den verschweißten Blechen an der Schweißlinse kontrastiert diese deutlich mit dem umgebenden Blechmaterial, bei dem der Wärmeübertrag zwischen den Blechen vergleichsweise gering ist. Dieser Kontrast im thermischen Verhalten kann mittels zeitabhängiger Thermografie gemessen werden. Durch das hier vorgestellte Verfahren kann mittels aktiver Thermografie sowohl in Transmissions- als auch in Reflexionsanordnung die Größe des thermischen Kontaktes zwischen den beiden Blechen ermittelt werden, welche ein Maß für die Größe der Schweißlinse und damit für die qualitative Güte der Schweißung darstellt. Ein Vorteil des entwickelten Verfahrens ist seine Anwendbarkeit auf Bleche ohne Oberflächenbehandlung. T2 - DACH-Jahrestagung 2015 CY - Salzburg, Austria DA - 11.05.2015 PY - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-343476 UR - http://www.ndt.net/?id=19068 SN - 1435-4934 VL - 21 IS - 4 SP - 1 EP - 7 PB - NDT.net CY - Kirchwald AN - OPUS4-34347 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jonietz, Florian A1 - Ziegler, Mathias A1 - Myrach, Philipp A1 - Suwala, Hubert A1 - Rethmeier, Michael T1 - Untersuchung von Punktschweißverbindungen mit aktiver Thermografie T2 - DACH-Jahrestagung 2015 CY - Salzburg (Österreich) DA - 2015-05-11 PY - 2015 AN - OPUS4-34293 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jonietz, Florian A1 - Myrach, Philipp A1 - Suwala, H. A1 - Ziegler, Mathias T1 - Examination of Spot Welded Joints with Active Thermography N2 - The method described here allows to determine the size of the thermal contact between two metal sheets joined by spot welding. This size is a measure for the size of the weld nugget, i.e. the zone melted during the welding process, and thus the quality of the welded joint. The method applies active thermography in transmission or reflection setup. Especially the reflection setup offers an attractive possibility for non-destructive testing when components can be accessed from one side only. The spot weld region is optically heated by laser or flash light radiation. The weld nugget provides the mechanical joint, but also constitutes a thermal bridge between the two welded sheets. The latter will be exploited in this method. The better thermal contact at the weld Nugget contrasts with the surrounding material, where the heat transfer between the two sheets is comparatively low. A major advantage of the described method is the applicability on sheets without any surface treatment. This is achieved by a proper normalization of the data, allowing for a correction of the varying surface emissivity. KW - Active thermography KW - Spot weld KW - Automotive industry PY - 2016 UR - http://link.springer.com/article/10.1007/s10921-015-0318-4?wt_mc=internal.event.1.SEM.ArticleAuthorIncrementalIssue U6 - https://doi.org/10.1007/s10921-015-0318-4 VL - 35:1 SP - 1 EP - 14 PB - Springer CY - New York AN - OPUS4-35480 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maierhofer, Christiane A1 - Myrach, Philipp A1 - Röllig, Mathias A1 - Jonietz, Florian A1 - Illerhaus, Bernhard A1 - Meinel, Dietmar A1 - Richter, U. A1 - Miksche, R. ED - Chimenti, Dale E. ED - Bond, Leonard J. T1 - Characterization of pores in high pressure die cast aluminum using active thermography and computed tomography N2 - Larger high pressure die castings (HPDC) and decreasing wall thicknesses are raising the issue of casting defects like pores in aluminum structures. Properties of components are often strongly influenced by inner porosity. As these products are being established more and more in lightweight construction (e.g. automotive and other transport areas), non-destructive testing methods, which can be applied fast and on-site, are required for quality assurance. In this contribution, the application of active thermography for the direct detection of larger pores is demonstrated. The analysis of limits and accuracy of the method are completed by numerical simulation and the method is validated using computed tomography. T2 - 42nd Annual Review of Progress in Quantitative Nondestructive Evaluation CY - Minneapolis, Minnesota, USA DA - 26.07.2015 KW - flash thermography KW - aluminum KW - pores KW - computed tomography PY - 2016 SN - 978-0-7354-1353-5 U6 - https://doi.org/10.1063/1.4940580 VL - 1706 SP - 110009-1 EP - 110009-8 PB - AIP Publishing LLC CY - Melville, New York, USA AN - OPUS4-35848 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jonietz, Florian A1 - Myrach, Philipp A1 - Rethmeier, Michael A1 - Suwala, H. A1 - Ziegler, Mathias T1 - Laser Based Spot Weld Characterization N2 - Spot welding is one of the most important joining technologies, especially in the automotive industry. Hitherto,the quality of spot welded joints is tested mainly by random destructive tests. A nondestructive testing technique offers the benefit of cost reduction of the testing procedure and optimization of the fabrication process, because every joint could be examined. This would lead to a reduced number of spot welded joints, as redundancies could be avoided. In the procedure described here, the spot welded joint between two zinc-coated steel sheets (HX340LAD+Z100MB or HC340LA+ZE 50/50) is heated optically on one side. Laser radiation and flash light are used as heat sources. The melted zone, the so called “weld nugget” provides the mechanical stability of the connection, but also constitutes a thermal bridge between the sheets. Due to the better thermal contact, the spot welded joint reveals a thermal behavior different from the surrounding material, where the heat transfer between the two sheets is much lower. The difference in the transient thermal behavior is measured with time resolved thermography. Hence, the size of the thermal contact between the two sheets is determined, which is directly correlated to the size of the weld nugget, indicating the quality of the spot weld. The method performs well in transmission with laser radiation and flash light. With laser radiation, it works even in reflection geometry, thus offering the possibility of testing with just one-sided accessibility. By using heating with collimated laser radiation, not only contactfree, but also remote testing is feasible. A further convenience compared to similar thermographic approaches is the applicability on bare steel sheets without any optical coating for emissivity correction. For this purpose, a proper way of emissivity correction was established. T2 - 42ND ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION: Incorporating the 6th European-American Workshop on Reliability of NDE CY - Minneapolis, Minnesota, USA DA - 26.07.2015 KW - Laser PY - 2016 SN - 978-0-7354-1353-5 U6 - https://doi.org/10.1063/1.4940570 VL - 1706 SP - 100010-1 EP - 100010-8 PB - AIP Publishing AN - OPUS4-35367 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jonietz, Florian A1 - Myrach, Philipp A1 - Rethmeier, Michael A1 - Suwala, H. A1 - Ziegler, Mathias T1 - Laser Based Spot Weld Characterization T2 - QNDE 2015 CY - Minneapolis, USA DA - 2015-07-27 PY - 2015 AN - OPUS4-34413 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Antons, U. A1 - Eisenkrein-Kreksch, H. A1 - Krankenhagen, Rainer A1 - Altenburg, Simon A1 - Jonietz, Florian T1 - Thermografische Schichtdickenbestimmung von Oberflächenschutzsystemen N2 - Die Anwendung von Polymerbeschichtungen im Bauwesen hat über die letzten Dekaden stetig zugenommen. Neben ästhetischen Aspekten sind vor allem die Verbesserung der Dauerhaftigkeit des Bauwerks und damit einhergehend die Verlängerung der Nutzungsdauer ausschlaggebende Gründe für die Wahl einer Beschichtung. Um die jeweiligen Bauteile vor Alterung, Verschleiß und Schädigung effektiv und zielsicher schützen zu können ist die Einhaltung der von den Herstellern vorgegebenen Mindestschichtdicken von essenzieller Bedeutung. Aus diesem Grund ist es notwendig die Schichtdicke der Beschichtung nach erfolgter Applikation zu überprüfen. Für den in diesem Zusammenhang anspruchs-vollen mineralischen Untergrund Beton stehen für die Baustelle bislang allerdings nur zerstörende Prüfverfahren zur Verfügung. Aufbauend auf den Ergebnissen zur photothermischen Schichtdickenbestimmung von Polymerbeschichtungen im Rah-men des Forschungsprojektes IRKUTSK werden derzeit im WIPANO Projekt PHOBOSS weitreichende Untersuchungen durchgeführt, um diese zerstörungsfreie Untersuchungsmethode auf den Baubereich anzuwenden. Ziel des WIPANO Projektes PHOBOSS ist neben der Verfeinerung und Validierung der Mess-und Auswertungsmethodik die Erstellung eines Normenentwurfes welcher Rahmenbedingungen und Anforderungen für Messung und Messgerät enthalten soll. Im Rahmen dieser Veröffentlichung werden Einblicke in das zur Schichtdickenbestimmung entwickelte Thermografie-verfahren gegeben. Die Funktionsweise des Verfahrens für die Messung von Oberflächenschutzsystemen wird anhand von Labor- und In Situ-Messungen illustriert und der für die Messungen verwendete Prototyp vorgestellt. T2 - 6. Kolloquium "Erhaltung von Bauwerken" CY - Esslingen, Germany DA - 22.01.2019 KW - Beton KW - Oberflächenschutzsystem (OSS) KW - Zerstörungsfreie Prüfung KW - photothermisch KW - Normung PY - 2019 UR - https://www.irb.fraunhofer.de/literaturbeschaffung.jsp SN - 978-3-943563-05-4 SP - 151 EP - 157 PB - TAE Selbstverlag CY - Ostfildern AN - OPUS4-50044 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jonietz, Florian A1 - Krankenhagen, Rainer A1 - Altenburg, Simon A1 - Eisenkrein-Kreksch, H. T1 - Standardisierung eines thermografischen Verfahrens zur Schichtdickenbestimmung von Beton-Oberflächenschutzsystemen N2 - Polymerbeschichtungen auf Beton bieten einerseits mechanischen Schutz vor Beschädigungen und verhindern das Eindringen von Wasser, gelösten Salzen und CO2 und können andererseits der Oberfläche ein gewünschtes Aussehen geben. Daher werden sie in der Bauindustrie insbesondere bei Brücken und Parkhäusern häufig verwendet. Für die beabsichtigte Wirkung der Beschichtung ist deren Schichtdicke ein entscheidender Faktor und muss daher nach Aufbringung der Schicht und im Betrieb regelmäßig überprüft werden. Üblich sind hier zerstörende Verfahren mit nachträglich erforderlicher Ausbesserung. Im Rahmen eines Vorgängerprojektes wurde an der BAM in Kooperation mit der IBOS GmbH ein zerstörungsfreies Verfahren entwickelt, welches auf aktiver Thermografie basiert. Ein Prototyp mit Halogenlampe und Infrarot-Kamera wurde erprobt. Das hier beschriebene Folgeprojekt hat das Ziel, dieses Verfahren zu standardisieren, damit es sich in der Industrie als zerstörungsfreies Alternativverfahren zur Schichtdickenbestimmung durchsetzt. Im ersten Schritt wird gezeigt, bei welchen Oberflächenschutzsystemen das Verfahren bereits zuverlässige Schichtdickenmessungen ermöglicht und praxistauglich ist. Anschließend werden weitere Forschungsthemen definiert und bearbeitet, die eine Anwendung für alle Oberflächenschutzsysteme ermöglichen sollen. Besondere Herausforderungen stellen etwa Sandeinstreuungen in der Polymerschicht dar. Auch muss der Frage nach der Anwendbarkeit auf Mehrschichtsysteme nachgegangen werden. Des Weiteren stellt sich die Frage nach dem Einfluss der Beschaffenheit des Betonuntergrunds auf die Anwendbarkeit des Verfahrens. Im zu erarbeitenden Normentwurf sollen diese Untersuchungen die Möglichkeiten, aber auch die Grenzen der aktiven Thermografie zur Schichtdickenmessung von Oberflächenschutzsystemen aufzeigen. Im Beitrag werden die systematischen Untersuchungen bezüglich dieser Fragestellungen dargelegt. T2 - DACH-Jahrestagung 2019 CY - Friedrichshafen, Germany DA - 27.05.2019 KW - thermografisches Verfahren KW - Standardisierung KW - Schichtdickenbestimmung KW - Beton-Oberflächenschutzsysteme KW - Polymerbeschichtungen auf Beton PY - 2019 AN - OPUS4-49008 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jonietz, Florian A1 - Krankenhagen, Rainer A1 - Altenburg, Simon A1 - Eisenkrein-Kreksch, H. T1 - Standardisierung eines thermografischen Verfahrens zur Schichtdickenbestimmung von Beton-Oberflächenschutzsystemen N2 - Polymerbeschichtungen auf Beton bieten einerseits mechanischen Schutz vor Beschädigungen und verhindern das Eindringen von Wasser, gelösten Salzen und CO2 und können andererseits der Oberfläche ein gewünschtes Aussehen geben. Daher werden sie in der Bauindustrie insbesondere bei Brücken und Parkhäusern häufig verwendet. Für die beabsichtigte Wirkung der Beschichtung ist deren Schichtdicke ein entscheidender Faktor und muss daher nach Aufbringung der Schicht und im Betrieb regelmäßig überprüft werden. Üblich sind hier zerstörende Verfahren mit nachträglich erforderlicher Ausbesserung. Im Rahmen eines Vorgängerprojektes wurde an der BAM in Kooperation mit der IBOS GmbH ein zerstörungsfreies Verfahren entwickelt, welches auf aktiver Thermografie basiert. Ein Prototyp mit Halogenlampe und Infrarot-Kamera wurde erprobt. Das hier beschriebene Folgeprojekt hat das Ziel, dieses Verfahren zu standardisieren, damit es sich in der Industrie als zerstörungsfreies Alternativverfahren zur Schichtdickenbestimmung durchsetzt. Im ersten Schritt wird gezeigt, bei welchen Oberflächenschutzsystemen das Verfahren bereits zuverlässige Schichtdickenmessungen ermöglicht und praxistauglich ist. Anschließend werden weitere Forschungsthemen definiert und bearbeitet, die eine Anwendung für alle Oberflächenschutzsysteme ermöglichen sollen. Besondere Herausforderungen stellen etwa Sandeinstreuungen in der Polymerschicht dar. Auch muss der Frage nach der Anwendbarkeit auf Mehrschichtsysteme nachgegangen werden. Des Weiteren stellt sich die Frage nach dem Einfluss der Beschaffenheit des Betonuntergrunds auf die Anwendbarkeit des Verfahrens. Im zu erarbeitenden Normentwurf sollen diese Untersuchungen die Möglichkeiten, aber auch die Grenzen der aktiven Thermografie zur Schichtdickenmessung von Oberflächenschutzsystemen aufzeigen. Im Beitrag werden die systematischen Untersuchungen bezüglich dieser Fragestellungen dargelegt. T2 - DACH-Jahrestagung 2019 CY - Friedrichshafen, Germany DA - 27.05.2019 KW - thermografisches Verfahren KW - Standardisierung KW - Schichtdickenbestimmung KW - Beton-Oberflächenschutzsysteme KW - Polymerbeschichtungen auf Beton PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-490093 UR - http://www.ndt.net/?id=24548 SN - 978-3-947971-02-2 VL - 171 SP - Mi.1.C.4-1 EP - Mi.1.C.4-9 PB - Deutsche Gesellschaft für Zerstörungsfreie Prüfung (DGZfP) CY - Berlin AN - OPUS4-49009 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kästner, L. A1 - Ahmadi, Samim A1 - Jonietz, Florian A1 - Jung, P. A1 - Caire, G. A1 - Ziegler, Mathias A1 - Lambrecht, J. T1 - Classification of Spot-Welded Joints in Laser Thermography Data Using Convolutional Neural Networks N2 - Spot welding is a crucial process step in various industries. However, classification of spot welding quality is still a tedious process due to the complexity and sensitivity of the test material, which drain conventional approaches to its limits. In this article, we propose an approach for quality inspection of spot weldings using images from laser thermography data. We propose data preparation approaches based on the underlying physics of spot-welded joints, heated with pulsed laser thermography by analyzing the intensity over time and derive dedicated data filters to generate training datasets. Subsequently, we utilize convolutional neural networks to classify weld quality and compare the performance of different models against each other. We achieve competitive results in terms of classifying the different welding quality classes compared to traditional approaches, reaching an accuracy of more than 95 percent. Finally, we explore the effect of different augmentation methods. KW - Active thermal imaging KW - Laser thermography KW - Spot-welded joints KW - Convolutional neural network KW - Classification KW - Data processing PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-524216 VL - 9 SP - 48303 EP - 48312 AN - OPUS4-52421 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Myrach, Philipp A1 - Jonietz, Florian A1 - Meinel, Dietmar A1 - Suwala, Hubert A1 - Ziegler, Mathias T1 - Calibration of thermographic spot weld testing with X-ray computed tomography N2 - The paper presents an attempt for the calibration of an active thermography method that is suitable for the non-destructive evaluation of spot welds. Nowadays, the quality of spot welds is commonly characterised by the application of random chisel tests, which are time consuming, expensive and destructive. Recently a non-destructive testing method by means of active thermography was proposed that relies on the fact that the mechanical connection formed by the spot weld also serves as a thermal bridge between the two steel sheets joined in the welding process. It is shown in this paper that this thermal bridge can be thermographically characterised by extracting a measure for the spot weld diameter and hence the quality of the spot weld. The determination of the absolute value of the diameter hereby relies on a calibration of the testing system, which is performed by means of X-ray computed tomography in this study. The experiments were carried out using different experimental approaches, namely transmission as well as reflection geometry wSetup in reflectionith laser illumination. A comprehensive evaluation of samples produced using different welding currents, hence different quality, was carried out in order to validate the thermographic results. KW - Thermography KW - Spot welds KW - Spot welding KW - Computed thomography KW - Non-destructive testing PY - 2017 U6 - https://doi.org/10.1080/17686733.2017.1281554 SN - 1768-6733 SN - 2116-7176 VL - 14 IS - 1 SP - 122 EP - 131 PB - Taylor & Francis CY - London AN - OPUS4-40180 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krankenhagen, Rainer A1 - Jonietz, Florian A1 - Noack, M. A1 - Gensecke, K. A1 - Wiedenmann, E. T1 - 3D-Scannen mit integrierter thermografischer Qualitätsprüfung N2 - Sowohl die 3D-Formbestimmung als auch die Thermografie sind Verfahren der Qualitätssicherung. Im vorgestellten Projekt wird versucht, die beiden Methoden zusammenzuführen. Das Prinzip des für die Formbestimmung verwendeten 3D-Scanners beruht auf dem bereits bekannten Verfahren der Streifenlichtprojektion. Die Neuartigkeit des hier verwendeten 3D-Scanners besteht darin, dass nicht im sichtbaren, sondern im infraroten Spektralbereich gearbeitet wird. Dadurch wird es möglich, nicht die Reflexion, sondern die Wärmestrahlung des Prüfobjektes nach Absorption der eingebrachten Strahlung auszuwerten. Dies ermöglicht erstmals, transparente und stark absorbierende Oberflächen zu erfassen. Die Anregung mit Wärmestrahlung stellt das Bindeglied zum Verfahren der aktiven Thermografie für die Detektion verdeckter Schäden dar. Bei letzterem Verfahren wird der Wärmestau über Defekten beim Eindringen der Wärme in die Tiefe des Materials gemessen. Dabei stellen Defekte eine Störung des 3D-Scan-Verfahrens dar, während umgekehrt unregelmäßig geformte Oberflächen das thermografische Verfahren erschweren, d.h. der Messeffekt eines der Verfahren ist ein Störeffekt für das jeweils andere Verfahren. Es wird zum einen der Frage nachgegangen, inwieweit das 3D-Scan-Verfahren durch verdeckte Defekte beeinträchtigt wird, und zum anderen die Möglichkeit untersucht, den vorhandenen 3D-Scanner auch für die aktive Thermografie einzusetzen. Vor allem wurden CFK-Proben mit künstlich eingebrachten Defekten untersucht. Es werden die Möglichkeiten und Grenzen der vorhandenen Messapparatur für die Defekterkennung aufgezeigt. T2 - 3D-NordOst 2017 CY - Berlin, Germany DA - 7.12.2017 KW - Streifenprojektion KW - Zerstörungsrfreie Prüfung KW - Thermographic testing KW - 3D-Scanner PY - 2017 AN - OPUS4-43358 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jonietz, Florian A1 - Krankenhagen, Rainer A1 - Noack, M. A1 - Gensecke, K. A1 - Wiedenmann, E. T1 - 3D-Formbestimmung mit integrierter thermografischer Qualitätsprüfung N2 - Sowohl die 3D-Formbestimmung als auch die Thermografie sind Verfahren der Qualitätssicherung. Im vorgestellten Projekt wird versucht, die beiden Methoden zusammenzuführen. Das Prinzip des für die Formbestimmung verwendeten 3D-Scanners beruht auf dem bereits bekannten Verfahren der Streifenlichtprojektion. Die Neuartigkeit des hier verwendeten 3D-Scanners besteht darin, dass nicht im sichtbaren, sondern im infraroten Spektralbereich gearbeitet wird. Dadurch wird es möglich, nicht die Reflexion, sondern die Wärmestrahlung des Prüfobjektes nach Absorption der eingebrachten Strahlung auszuwerten. Dies ermöglicht, auch optisch „nicht-kooperative“ Oberflächen zu erfassen. Die Anregung mit Wärmestrahlung stellt das Bindeglied zum Verfahren der aktiven Thermografie für die Detektion verdeckter Schäden dar. Bei letzterem Verfahren wird der Wärmestau über Defekten beim Eindringen der Wärme in die Tiefe des Materials gemessen. Dabei stellen Defekte eine Störung des 3D-Scan-Verfahrens dar, während umgekehrt unregelmäßig geformte Oberflächen das thermografische Verfahren erschweren, d.h. der Messeffekt eines der Verfahren ist ein Störeffekt für das jeweils andere Verfahren. Es wird zum einen der Frage nachgegangen, inwieweit das 3D-Scan-Verfahren durch verdeckte thermische Defekte beeinträchtigt wird, und zum anderen die Möglichkeit untersucht, den vorhandenen 3D-Scanner auch für die aktive Thermografie einzusetzen. Es werden CFK-Proben mit künstlich eingebrachten thermischen Defekten untersucht und die Möglichkeiten und Grenzen der vorhandenen Messapparatur für die Defekterkennung aufgezeigt. T2 - DGZfP-Jahrestagung 2017 CY - Koblenz, Germany DA - 22.05.2017 KW - 3D-Formbestimmung KW - Thermografische Qualitätsprüfung KW - Streifenlichtprojektion KW - 3D-Scanner KW - Aktive Thermografie PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-407856 UR - https://jahrestagung.dgzfp.de/Portals/151//doc/Mi.1.A.3.pdf SN - 978-3-940283-85-6 VL - 162 SP - 1 EP - 9 PB - Deutsche Gesellschaft für Zerstörungsfreie Prüfung (DGZfP) CY - Berlin AN - OPUS4-40785 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jonietz, Florian A1 - Krankenhagen, Rainer A1 - Noack, M. A1 - Gensecke, K. A1 - Wiedenmann, E. T1 - 3D-Formbestimmung mit integrierter thermografischer Qualitätsprüfung N2 - Sowohl die 3D-Formbestimmung als auch die Thermografie sind Verfahren der Qualitätssicherung. Im vorgestellten Projekt wird versucht, die beiden Methoden zusammenzuführen. Das Prinzip des für die Formbestimmung verwendeten 3D-Scanners beruht auf dem bereits bekannten Verfahren der Streifenlichtprojektion. Die Neuartigkeit des hier verwendeten 3D-Scanners besteht darin, dass nicht im sichtbaren, sondern im infraroten Spektralbereich gearbeitet wird. Dadurch wird es möglich, nicht die Reflexion, sondern die Wärmestrahlung des Prüfobjektes nach Absorption der eingebrachten Strahlung auszuwerten. Dies ermöglicht, auch optisch „nicht-kooperative“ Oberflächen zu erfassen. Die Anregung mit Wärmestrahlung stellt das Bindeglied zum Verfahren der aktiven Thermografie für die Detektion verdeckter Schäden dar. Bei letzterem Verfahren wird der Wärmestau über Defekten beim Eindringen der Wärme in die Tiefe des Materials gemessen. Dabei stellen Defekte eine Störung des 3D-Scan-Verfahrens dar, während umgekehrt unregelmäßig geformte Oberflächen das thermografische Verfahren erschweren, d.h. der Messeffekt eines der Verfahren ist ein Störeffekt für das jeweils andere Verfahren. Es wird zum einen der Frage nachgegangen, inwieweit das 3D-Scan-Verfahren durch verdeckte thermische Defekte beeinträchtigt wird, und zum anderen die Möglichkeit untersucht, den vorhandenen 3D-Scanner auch für die aktive Thermografie einzusetzen. Es werden CFK-Proben mit künstlich eingebrachten thermischen Defekten untersucht und die Möglichkeiten und Grenzen der vorhandenen Messapparatur für die Defekterkennung aufgezeigt. T2 - DGZfP-Jahrestagung 2017 CY - Koblenz, Germany DA - 22.05.2017 KW - 3D-Formbestimmung KW - Thermografische Qualitätsprüfung KW - Streifenlichtprojektion KW - 3D-Scanner KW - Aktive Thermografie PY - 2017 AN - OPUS4-40787 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -