TY - JOUR A1 - Eitzen, L. A1 - Paul, S. A1 - Braun, Ulrike A1 - Altmann, Korinna A1 - Jekel, M. A1 - Ruhl, A. T1 - The challenge in preparing particle suspensions for aquatic microplastic research JF - Environmental research N2 - The occurrence of small particles consisting of organic polymers, so-called microplastic (MP), in aquatic Environments attracts increasing interest in both public and science. Recent sampling campaigns in surface Waters revealed substantial numbers of particles in the size range from a few micrometers to a few millimeters. In order to validate sample preparation, identification and quantification and to investigate the behavior of MP particles and potential toxic effects on organisms, defined MP model particles are needed. Many studies use spherical compounds that probably behave differently compared to irregularly shaped MP found in environmental samples. However, preparation and handling of MP particles are challenging tasks and have been systematically investigated in the present study. Polystyrene (PS) as a commonly found polymer with a density slightly above that of water was selected as polymer type for milling and fractionation studies. A cryogenic ball mill proved to be practical and effective to produce particles in the size range from 1 to 200 μm. The yield of small particles increased with increasing pre-cooling and milling durations. Depending on the concentration and the size, PS particles do not completely disperse in water and particles partly creep vertically up along glass walls. Stabilized MP suspensions without use of surfactants that might harm organisms are needed for toxicological studies. The stabilization of PS particle suspensions with ozone treatment reduced the wall effect and increased the number of dispersed PS particles but increased the dissolved organic carbon concentration and changed the size Distribution of the particles. KW - Reference material KW - Microplastic PY - 2018 DO - https://doi.org/10.1016/j.envres.2018.09.008 SN - 0013-9351 SN - 1096-0953 VL - 168 SP - 490 EP - 495 PB - Elsevier AN - OPUS4-46462 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eisentraut, Paul A1 - Dümichen, Erik A1 - Ruhl, A. A1 - Jekel, M. A1 - Albrecht, M. A1 - Gehde, M. A1 - Braun, Ulrike T1 - Two Birds with One Stone-Fast and Simultaneous Analysis of Microplastics: Microparticles Derived from Thermoplastics and Tire Wear JF - ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS N2 - Analysis of microplastic particles (MP) in environmental samples needs sophisticated techniques and is time intensive due to sample preparation and detection. An alternative to the most common (micro ) spectroscopic techniques, FTIR or Raman spectroscopy, are the thermoanalytical methods, where specific decomposition products can be analyzed as marker compounds for different kind of plastics types and mass contents. Thermal extraction desorption gas chromatography mass spectrometry (TED-GC-MS) allows the fast identification and quantification of MP in environmental samples without sample preparation. Whereas up to now only the analysis of thermoplastic polymers was realized, this is the first time that even the analysis of tire wear (TW) content in environmental samples is possible. Various marker compounds for TW were identified. They include characteristic decomposition products of elastomers, antioxidants and vulcanization agents. Advantages and drawbacks of these marker substances were evaluated. Environmental samples from street run off were exemplarily investigated and presented. KW - TED-GC-MS KW - Microplastic KW - Tire wear PY - 2018 DO - https://doi.org/10.1021/acs.estlett.8b00446 VL - 5 IS - 10 SP - 608 EP - 613 PB - American Chemical Society AN - OPUS4-46460 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dittmann, Daniel A1 - Braun, Ulrike A1 - Jekel, M. A1 - Ruhl, A. S. T1 - Thermoanalytische Verfahren in der Umweltanalytik: Neue Methoden für die weitergehende Abwasserbehandlung mit Aktivkohle T2 - Wasser 2018 - Jahrestagung der Wasserchemischen Gesellschaft - Fachgruppe in der Gesellschaft Deutscher Chemiker e.V. N2 - In diesem Beitrag werden zwei Möglichkeiten zur Quantifizierung von PAK in Belebtschlamm durch thermogravimetrische Methoden beschrieben sowie der Einfluss von PAK auf die Biomasse mittels Zersetzungsgasanalyse nachgewiesen. T2 - Wasser 2018 CY - Papenburg, Germany DA - 07.05.2018 KW - Thermogravimetrie KW - Belebtschlamm KW - Infrarotspektroskopie KW - Thermoanalyse KW - Pulveraktivkohle PY - 2018 SN - 978-3-947197-05-7 SP - 301 EP - 305 AN - OPUS4-44972 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dittmann, Daniel A1 - Braun, Ulrike A1 - Jekel, M. A1 - Ruhl, A. S. T1 - Quantification and characterisation of activated carbon in activated sludge by thermogravimetric and evolved gas analyses JF - Journal of Environmental Chemical Engineering N2 - Advanced wastewater treatment with powdered activated carbon (PAC) leads to a spread of PAC into different purification stages of wastewater treatment plants (WWTP) due to recirculation and filter back-wash. Currently, no methods for quantification of PAC in activated sludge are available. In this study, PAC containing activated sludge from four WWTP were examined by two-step thermogravimetric analysis (TGA) with heating up to 600°C in N2 and subsequently in synthetic air. Direct quantification of PAC according to temperature specific weight losses was possible for one WWTP. Quantification by combining specific mass losses was found to be an alternative direct method, with a detection limit of 1.2% PAC in dry sample mass. Additionally, evolved gas analysis (EGA) by infrared-spectroscopy (FTIR) during TGA revealed interaction mechanisms between PAC and activated sludge. Aliphatic compounds from activated sludge were identified as major substances influenced by PAC. In derivative thermogravimetry (DTG), a typical double peak at approximately 300°C was found to be related to carbonylic species with increased evolution of acetic acid in aged activated sludge. TGA and EGA are promising tools to understand, control and optimise the application of PAC in advanced wastewater treatment. KW - Advanced wastewater treatment KW - Powdered activated carbon KW - Sewage treatment plant KW - Thermoanalysis KW - Thermogravimetry KW - Fourier transform infrared spectroscopy PY - 2018 UR - http://www.sciencedirect.com/science/article/pii/S2213343718301313 DO - https://doi.org/10.1016/j.jece.2018.03.010 SN - 2213-3437 VL - 6 IS - 2 SP - 2222 EP - 2231 PB - Elsevier CY - Amsterdam AN - OPUS4-44978 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -