TY - JOUR A1 - Zietzschmann, F. A1 - Dittmar, S. A1 - Splettstößer, L. A1 - Hunsicker, J. A1 - Dittmann, Daniel A1 - Meinel, F. A1 - Rößler, A. A1 - Metzger, S. A1 - Jekel, M. A1 - Ruhl, A. S. T1 - Fast empirical lab method for performance projections of large-scale powdered activated carbon re-circulation plants JF - Chemosphere N2 - Powdered activated carbon (PAC) for organic micro-pollutant (OMP) removal can be applied effectively on wastewater treatment plant (WWTP) effluents by using re-circulation schemes, accumulating the PAC in the system. This technique is complex because several factors are unknown: (i) the PAC concentration in the system, (ii) specific and average contact times of PAC particles, and (iii) PAC particle loadings with target compounds/competing water constituents. Thus, performance projections (e.g. in the lab) are very challenging. We sampled large-scale PAC plants with PAC sludge re-circulation on eight different WWTPs. The PAC plant-induced OMP removals were notably different, even when considering PAC concentrations in proportion to background organic sum parameters. The variability is likely caused by differing PAC products, varying water composition, differently effective plant/re-circulation operation, and variable biodegradation. Plant PAC samples and parts of the PAC plant influent samples were used in laboratory tests, applying multiples (0.5, 1, 2, 4) of the respective large-scale “fresh” PAC doses, and several fixed contact times (0.5, 1, 2, 4, 48 h). The aimwas to empirically identify suitable combinations of lab PAC dose (as multiples of the plant PAC dose) and contact time, which represent the PAC plant performances in removing OMPs (for specific OMPs at single locations, and for averages of different OMPs at all locations). E.g., for five well adsorbing, little biodegradable OMPs, plant performances can be projected by using a lab PAC dose of twice the respective full-scale PAC dose and 4 h lab contact time (standard deviation of 13 %-points). KW - Adsorption KW - Powdered activated carbon KW - Organic micro-pollutant KW - Trace organic contaminant PY - 2019 DO - https://doi.org/10.1016/j.chemosphere.2018.10.055 VL - 215 SP - 563 EP - 573 PB - Elsevier Ltd. AN - OPUS4-46957 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Goedecke, C. A1 - Eisentraut, Paul A1 - Altmann, Korinna A1 - Elert, Anna Maria A1 - Bannick, C. G. A1 - Ricking, M. A1 - Obermaier, N. A1 - Barthel, A.-K. A1 - Schmitt, T. A1 - Jekel, M. A1 - Braun, U. T1 - Development of a routine screening method for the microplastic mass content in a wastewater treatment plant effluent JF - Frontiers in environmental chemistry N2 - An investigation of microplastic (MP) occurrence in a municipal wastewater treatment plant (WWTP) effluent with tertiary treatment was carried out. Representative sample volumes of 1 m3 were taken by applying a fractionated filtration method (500, 100, and 50 µm mesh sizes). The detection of MP mass fractions by thermal extraction desorption–gas chromatography/mass spectrometry (TED-GC/MS) was achieved without the previously required additional sample pretreatment for the first time. Different types of quantification methods for the evaluation of TED-GC/MS data were tested, and their accuracy and feasibility have been proven for real samples. Polyethylene, polystyrene, and polypropylene were identified in effluent samples. The polymer mass content varied significantly between 5 and 50 mg m−3. A correlation between the MP load and the quantity of suspended matter in the WWTP effluents, particle size distribution, particle type, and operation day (i.e., weekday, season, and capacity) was not found. It can be concluded that a meaningful assessment of WWTPs requires a comprehensive sampling campaign with varying operation conditions. KW - Microplastic KW - Waste water treatment KW - Thermoanalytics PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-550862 DO - https://doi.org/10.3389/fenvc.2022.844633 SN - 2673-4486 VL - 3 SP - 1 EP - 10 PB - Frontiers Media CY - Lausanne AN - OPUS4-55086 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eitzen, L. A1 - Paul, S. A1 - Braun, Ulrike A1 - Altmann, Korinna A1 - Jekel, M. A1 - Ruhl, A. T1 - The challenge in preparing particle suspensions for aquatic microplastic research JF - Environmental research N2 - The occurrence of small particles consisting of organic polymers, so-called microplastic (MP), in aquatic Environments attracts increasing interest in both public and science. Recent sampling campaigns in surface Waters revealed substantial numbers of particles in the size range from a few micrometers to a few millimeters. In order to validate sample preparation, identification and quantification and to investigate the behavior of MP particles and potential toxic effects on organisms, defined MP model particles are needed. Many studies use spherical compounds that probably behave differently compared to irregularly shaped MP found in environmental samples. However, preparation and handling of MP particles are challenging tasks and have been systematically investigated in the present study. Polystyrene (PS) as a commonly found polymer with a density slightly above that of water was selected as polymer type for milling and fractionation studies. A cryogenic ball mill proved to be practical and effective to produce particles in the size range from 1 to 200 μm. The yield of small particles increased with increasing pre-cooling and milling durations. Depending on the concentration and the size, PS particles do not completely disperse in water and particles partly creep vertically up along glass walls. Stabilized MP suspensions without use of surfactants that might harm organisms are needed for toxicological studies. The stabilization of PS particle suspensions with ozone treatment reduced the wall effect and increased the number of dispersed PS particles but increased the dissolved organic carbon concentration and changed the size Distribution of the particles. KW - Reference material KW - Microplastic PY - 2018 DO - https://doi.org/10.1016/j.envres.2018.09.008 SN - 0013-9351 SN - 1096-0953 VL - 168 SP - 490 EP - 495 PB - Elsevier AN - OPUS4-46462 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eisentraut, Paul A1 - Dümichen, Erik A1 - Ruhl, A. A1 - Jekel, M. A1 - Albrecht, M. A1 - Gehde, M. A1 - Braun, Ulrike T1 - Two Birds with One Stone-Fast and Simultaneous Analysis of Microplastics: Microparticles Derived from Thermoplastics and Tire Wear JF - ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS N2 - Analysis of microplastic particles (MP) in environmental samples needs sophisticated techniques and is time intensive due to sample preparation and detection. An alternative to the most common (micro ) spectroscopic techniques, FTIR or Raman spectroscopy, are the thermoanalytical methods, where specific decomposition products can be analyzed as marker compounds for different kind of plastics types and mass contents. Thermal extraction desorption gas chromatography mass spectrometry (TED-GC-MS) allows the fast identification and quantification of MP in environmental samples without sample preparation. Whereas up to now only the analysis of thermoplastic polymers was realized, this is the first time that even the analysis of tire wear (TW) content in environmental samples is possible. Various marker compounds for TW were identified. They include characteristic decomposition products of elastomers, antioxidants and vulcanization agents. Advantages and drawbacks of these marker substances were evaluated. Environmental samples from street run off were exemplarily investigated and presented. KW - TED-GC-MS KW - Microplastic KW - Tire wear PY - 2018 DO - https://doi.org/10.1021/acs.estlett.8b00446 VL - 5 IS - 10 SP - 608 EP - 613 PB - American Chemical Society AN - OPUS4-46460 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dittmann, Daniel A1 - Eisentraut, Paul A1 - Goedecke, Caroline A1 - Wiesner, Yosri A1 - Jekel, M A1 - Ruhl, A S A1 - Braun, Ulrike T1 - Specific adsorption sites and conditions derived by thermal decomposition of activated carbons and adsorbed carbamazepine JF - Scientific Reports N2 - The adsorption of organic micropollutants onto activated carbon is a favourable solution for the treatment of drinking water and wastewater. However, these adsorption processes are not sufficiently understood to allow for the appropriate prediction of removal processes. In this study, thermogravimetric analysis, alongside evolved gas analysis, is proposed for the characterisation of micropollutants adsorbed on activated carbon. Varying amounts of carbamazepine were adsorbed onto three different activated carbons, which were subsequently dried, and their thermal decomposition mechanisms examined. The discovery of 55 different pyrolysis products allowed differentiations to be made between specific adsorption sites and conditions. However, the same adsorption mechanisms were found for all samples, which were enhanced by inorganic constituents and oxygen containing surface groups. Furthermore, increasing the loadings led to the evolution of more hydrated decomposition products, whilst parts of the carbamazepine molecules were also integrated into the carbon structure. It was also found that the chemical composition, especially the degree of dehydration of the activated carbon, plays an important role in the adsorption of carbamazepine. Hence, it is thought that the adsorption sites may have a higher adsorption energy for specific adsorbates, when the activated carbon can then potentially increase its degree of graphitisation. KW - Aktivkohle KW - TED-GC/MS KW - Adsorption KW - Thermoanalytik PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506946 DO - https://doi.org/10.1038/s41598-020-63481-y VL - 10 IS - 1 SP - 6695 PB - Nature Publishing Group AN - OPUS4-50694 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dittmann, D. A1 - Saal, L. A1 - Zietschmann, F. A1 - Mai, M. A1 - Altmann, Korinna A1 - Al-Sabbagh, Dominik A1 - Schuhmann, P. A1 - Ruhl, A. A1 - Jekel, M. A1 - Braun, U. T1 - Characterization of activated carbons for water treatment using TGA‑FTIR for analysis of oxygen‑containing functional groups JF - Applied Water Science N2 - Water treatment with activated carbon (AC) is an established method for the removal of organic micropollutants and natu ral organic matter. However, it is not yet possible to predict the removal of individual pollutants. An appropriate material characterization, matching adsorption processes in water, might be the missing piece in the puzzle. To this end, this study examined 25 diferent commercially available ACs to evaluate their material properties. Frequently reported analyses, including N2 adsorption/desorption, CHNS(O), point of zero charge (PZC) analysis, and X-ray photoelectron spectroscopy, were conducted on a selected subset of powdered ACs. Inorganic elements examined using X-ray fuorescence and X-ray difraction spectroscopy revealed that relative elemental contents were distinctive to the individual AC’s raw material and activation procedure. This study also is the frst to use thermogravimetric analysis (TGA) coupled to Fourier-transform infrared spectroscopy (FTIR) to conduct quantitative analyses of functional surface oxygen groups (SOGs: carboxylic acid, anhydride, lactone, phenol, carbonyl, and pyrone groups) on such a large number of ACs. The comparably economical TGA method was found to provide good surrogates for the PZC by pyrolytic mass loss up to 600 ◦C (ML600), for the oxygen content by ML1000 and for the carbon content by oxidation. Mass loss profles depict the AC’s chemistry like fngerprints. Furthermore, we found that SOG contents determined by TGA-FTIR covered a wide individual range and depended on the raw material and production process of the AC. TGA and TGA-FTIR might therefore be used to identify the suitability of a particular AC for a variety of target substances in diferent target waters. This can help practitioners to control AC use in waterworks or wastewater treatment plants. KW - Adsorbtion KW - Organic contaminants KW - Temperature-programmed desorption KW - Proximate analysis KW - Principal component analysis PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-555506 DO - https://doi.org/10.1007/s13201-022-01723-2 SN - 2190-5495 VL - 12 SP - 1 EP - 13 PB - Springer CY - Berlin AN - OPUS4-55550 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -