TY - JOUR A1 - Dittmann, D. A1 - Saal, L. A1 - Zietschmann, F. A1 - Mai, M. A1 - Altmann, Korinna A1 - Al-Sabbagh, Dominik A1 - Schuhmann, P. A1 - Ruhl, A. A1 - Jekel, M. A1 - Braun, U. T1 - Characterization of activated carbons for water treatment using TGA‑FTIR for analysis of oxygen‑containing functional groups N2 - Water treatment with activated carbon (AC) is an established method for the removal of organic micropollutants and natu ral organic matter. However, it is not yet possible to predict the removal of individual pollutants. An appropriate material characterization, matching adsorption processes in water, might be the missing piece in the puzzle. To this end, this study examined 25 diferent commercially available ACs to evaluate their material properties. Frequently reported analyses, including N2 adsorption/desorption, CHNS(O), point of zero charge (PZC) analysis, and X-ray photoelectron spectroscopy, were conducted on a selected subset of powdered ACs. Inorganic elements examined using X-ray fuorescence and X-ray difraction spectroscopy revealed that relative elemental contents were distinctive to the individual AC’s raw material and activation procedure. This study also is the frst to use thermogravimetric analysis (TGA) coupled to Fourier-transform infrared spectroscopy (FTIR) to conduct quantitative analyses of functional surface oxygen groups (SOGs: carboxylic acid, anhydride, lactone, phenol, carbonyl, and pyrone groups) on such a large number of ACs. The comparably economical TGA method was found to provide good surrogates for the PZC by pyrolytic mass loss up to 600 ◦C (ML600), for the oxygen content by ML1000 and for the carbon content by oxidation. Mass loss profles depict the AC’s chemistry like fngerprints. Furthermore, we found that SOG contents determined by TGA-FTIR covered a wide individual range and depended on the raw material and production process of the AC. TGA and TGA-FTIR might therefore be used to identify the suitability of a particular AC for a variety of target substances in diferent target waters. This can help practitioners to control AC use in waterworks or wastewater treatment plants. KW - Adsorbtion KW - Organic contaminants KW - Temperature-programmed desorption KW - Proximate analysis KW - Principal component analysis PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-555506 SN - 2190-5495 VL - 12 SP - 1 EP - 13 PB - Springer CY - Berlin AN - OPUS4-55550 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -