TY - CHAP A1 - Telgmann, L. A1 - Lindner, U. A1 - Lingott, J. A1 - Jakubowski, Norbert ED - Prof. Dr. Golloch, Alfred T1 - Analysis and speciation of lanthanoides by ICP-MS N2 - Inductively coupled plasma mass spectrometry (ICP-MS) is based on formation of positively charged atomic ions in a high-frequency inductively coupled Argon plasma at atmospheric pressure. The ions are extracted and transferred from the plasma source into a mass analyzer operated at high vacuum via an interface equipped with a sampling and a skimmer cone. The ions are separated in the mass analyzer according to their charge to mass ratio. The ions are converted at a conversion dynode and are detected by use of a secondary electron multiplier or a Faraday cup. From an analytical point of view, ICP-MS is a well-established method for multi-elemental analysis in particular for elements at trace- and ultra-trace levels. Furthermore, methods based on ICP-MS offer simple quantification concepts, for which usually (liquid) standards are applied, low matrix effects compared to other conventional analytical techniques, and relative limits of detection (LODs) in the low pg g−1 range and absolute LODs down to the attomol range. For these applications, ICP-MS excels by a high sensitivity which is independent of the molecular structure and a wide linear dynamic range. It has found acceptance in various application areas and during the last decade ICP-MS is also more and more applied for detection of rare earth elements particularly in the life sciences. Due to the fact that all molecules introduced into the high temperature of the plasma in the ion source were completely dissociated and broken down into atoms, which are subsequently ionized, all elemental species information is completely lost. However, if the different species are separated before they enter the plasma by using adequate fractionation or separation techniques, then ICP-MS can be used as a very sensitive element-specific detector. We will discuss this feature of ICP-MS in this chapter in more detail at hand of the speciation of gadolinium-containing contrast agents. KW - Analysis of lanthanoides KW - ICP-MS KW - Speciation of Gd-containing MRI contrast agents PY - 2017 SN - 978-3-11-036523-8 SP - Chapter 5, 124 EP - 144 PB - De Gruyter AN - OPUS4-40238 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Müller, L. A1 - Traub, Heike A1 - Jakubowski, Norbert ED - Prof. Dr. Golloch, Alfred T1 - Novel applications of lanthanoides as analytical or diagnostic tools in the life sciences by ICP-MS-based techniques N2 - Inductively coupled plasma mass spectrometry (ICP-MS) is a well-established analytical method for multi-elemental analysis in particular for elements at trace and ultra-trace levels. It has found acceptance in various application areas during the last decade. ICP-MS is also more and more applied for detection in the life sciences. For these applications, ICP-MS excels by a high sensitivity, which is independent of the molecular structure of the analyte, a wide linear dynamic range and by excellent multi-element capabilities. Furthermore, methods based on ICP-MS offer simple quantification concepts, for which usually (liquid) standards are applied, low matrix effects compared to other conventional bioanalytical techniques, and relative limits of detection (LODs) in the low pg g−1 range and absolute LODs down to the attomol range. In this chapter, we focus on new applications where the multi-element capability of ICP-MS is used for detection of lanthanoides or rare earth elements, which are applied as elemental stains or tags of biomolecules and in particular of antibodies. KW - ICP-MS KW - Life sciences KW - Mass cytometry KW - Laser ablation (LA)-ICP-MS KW - Bioimaging PY - 2017 SN - 978-3-11-036523-8 SP - Chapter 11, 301 EP - 320 PB - De Gruyter AN - OPUS4-40244 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Jakubowski, Norbert T1 - Short course on ICP-MS N2 - ICP-MS is a well-established analytical method which excels by high accuracy, high dynamic range and extremely low limits of detection for most metals. Furthermore ICP-MS offers a very high multi-element coverage so that many elements of the periodic table can be detected simultaneously. In this series of lectures, we want to focus on the historical developments, fundamentals, instrumentation and novel applications of ICP-MS in the life and material sciences. KW - Fundamentals KW - Theory KW - Basics PY - 2017 SP - 1 EP - 33 CY - Berlin AN - OPUS4-40865 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Jakubowski, Norbert T1 - Lecture 7: Speciation N2 - ICP-MS is a well-established analytical method which excels by high accuracy, high dynamic range and extremely low limits of detection for most metals. Furthermore ICP-MS offers a very high multi-element coverage so that many elements of the periodic table can be detected simultaneously. In this series of lectures, we want to focus on the historical developments, fundamentals, instrumentation and novel applications of ICP-MS in the life and material sciences. KW - Speciation KW - SDS-PAGE KW - GC-ICP-MS PY - 2017 SP - 1 EP - 74 CY - Berlin AN - OPUS4-41721 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Jakubowski, Norbert T1 - Spectral interferences N2 - ICP-MS is a well-established analytical method which excels by high accuracy, high dynamic range and extremely low limits of detection for most metals. Furthermore ICP-MS offers a very high multi-element coverage so that many elements of the periodic table can be detected simultaneously. In this series of lectures, we want to focus on the historical developments, fundamentals, instrumentation and novel applications of ICP-MS in the life and material sciences. CY - Berlin KW - Spectral interferences KW - High resolution MS KW - Collision and reaction cells PY - 2017 SP - 1 EP - 18 CY - Berlin AN - OPUS4-40866 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Jakubowski, Norbert T1 - Non-spectral interferences N2 - ICP-MS is a well-established analytical method which excels by high accuracy, high dynamic range and extremely low limits of detection for most metals. Furthermore ICP-MS offers a very high multi-element coverage so that many elements of the periodic table can be detected simultaneously. In this series of lectures, we want to focus on the historical developments, fundamentals, instrumentation and novel applications of ICP-MS in the life and material sciences. KW - Matrix effects KW - Internal standards PY - 2017 SP - 1 EP - 7 CY - Berlin AN - OPUS4-40868 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Jakubowski, Norbert A1 - Schmidt, B. A1 - Sötebier, C. A1 - Pergantis, S. A1 - Shigeta, K. T1 - Single particle and single cell ICP-MS N2 - ICP-MS is a well-established analytical method which excels by high accuracy, high dynamic range and extremely low limits of detection for most metals. Furthermore ICP-MS offers a very high multi-element coverage so that many elements of the periodic table can be detected simultaneously. In this series of lectures, we want to focus on the historical developments, fundamentals, instrumentation and novel applications of ICP-MS in the life and material sciences. KW - Single particle ICP-MS KW - Single cell ICP-MS PY - 2017 AN - OPUS4-40952 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert A1 - Müller, L. A1 - Traub, Heike A1 - Panne, Ulrich A1 - Herrmann, Antje A1 - Kneipp, J. T1 - The quantitative elemental microscope: for what is it good for? N2 - Elemental imaging of biological samples using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) provides spatially resolved information on element distribution in thin sections. By rastering with a laser across the sample, a two-dimensional image of the elemental distribution can be reconstructed that shows the intensities of the respective elements. Using overlapping laser shots the area ablated from single cells or thin sections (thickness 5 to 10 µm) can be reduced significantly so that the pixel size of the intensity measurement is significantly reduced. Having in mind that a laser shot ablates thin biological samples completely, we can make use of a new concept for calibration in the laser ablation method: the concept of total consumption. This calibration strategy allows production of simple matrix matched standards and provides an internal standardisation by ink jet technology, where a metal containing inks is printed on as thin layer on top of a biological sample. Different applications will be presented where our concepts have been applied. In the first example we used nanoparticle suspension of given particle numbers to quantify the uptake of metallic nanoparticles by biological cells. In the second example antibodies have been tagged by metals to measure protein expression in prostata cancer. In this approach application of house keeping proteins are investigated additionally to compensate variations in thickness and density of the biopsy samples. In the third application different nephrotoxic behaviour of Pt containing drugs have been investigated to study the local enrichement in kidney samples of mice treated with these three different compounds. Here the internal standard is required to allow intercomparisons between different individual mouse tissues. At the end of the lecture future trends will be discussed for elemental microscopy. T2 - European Winter Conference on Plasma Spectrochemistry 2017 CY - Sankt Anton am Arlberg, Austria DA - 19.02.2017 KW - LA-ICP-MS KW - Bioimaging KW - Nanoparticles KW - Biomarker PY - 2017 AN - OPUS4-39267 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert A1 - Müller, L. A1 - Hösl, S. A1 - Traub, Heike A1 - Esteban-Fernández, D. A1 - Herrmann, Antje A1 - Panne, Ulrich T1 - Metal detection at cellular levels by use of laser ablation ICP-MS N2 - We are using laser ablation (LA)-ICP-MS to image the local distribution of elements (metals and hetero-elements) directly or (metallo-)proteins by metal-tagged antibodies in cells and tissue indirectly. Different applications will be discussed to demonstrate the state of the art and to visualize the elemental distribution pattern in soft bio-materials (tissue, single cells). In the first application Pt-containing drugs for cancer treatment are investigated and elemental distribution pattern are shown for tissue samples from animal experiments. Different standardization and quantification schemes including isotope dilution analysis will be discussed. In the second application, which is dedicated to toxicological research, the up-take of nano-particles by single cells are discussed and metal containing stains are used to visualize the distribution of nano-particles, proteins and DNA in a single cell simultaneously. This information is correlated with the distribution of the nanoparticles to identify the cell compartments where nano-particles are enriched. Quantification schemes have been developed to transform the measured intensities into number of particles up taken by the cells. In the third and last application LA-ICP-MS is applied to visualize the local distribution of proteins, which are used as bio-markers for prostate cancer. For this purpose, biopsy samples from patients have been simultaneously stained by eight differently metal-tagged antibodies in a multiplex approach. Detection of house-keeping proteins serves as internal standards to overcome differences in protein expression. Additionally ink-jet printing of metal doped inks onto the surface of these tissue samples has been applied for internal standardization and drift corrections. Finally future trends to develop an “elemental microscope” will be discussed. T2 - PITTCON 2017 CY - Chicago, IL, USA DA - 05.03.2017 KW - Element-microscopy KW - LA-ICP-MS KW - Nanoparticles KW - Immuno-assays PY - 2017 AN - OPUS4-39364 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert A1 - Müller, L. A1 - Traub, Heike A1 - Esteban-Fernández, D. A1 - Panne, Ulrich A1 - Wanka, Antje A1 - Schellenberger, E. A1 - Theuring, F. A1 - Kneipp, J. T1 - Method development for metal detection at cellular levels N2 - An overview about different analytical approaches will be presented of how to detect metals in individual biological cells by use of ICP-MS. For this purpose, we are using different sample introduction systems for ICP-MS for detection, imaging and quantification of metals at cellular levels. By use of laser ablation, we have studied the up-take by and distribution of nanoparticles in single cells. Recently we have developed staining techniques to measure protein and DNA content of cells and identifying the cell status by immunoassays using metal-tagging of antibodies. New research based on cell arrays will be shortly discussed. Using pneumatic nebulization and microdroplet generation, we have also studied the up-take of nanoparticles and toxic metals as well as essential elements in single cells using different ICP-MS mass spectrometric concepts (sector field instrument, triple-quad instrument, time of flight (CyTOF) instrument). The different ICP-MS based methods will be compared concerning their analytical figures of merit and their strengths and weaknesses will be evaluated. T2 - Metallomics 2017 CY - Vienna, Austria DA - 14.08.2017 KW - Single cell analysis KW - Laser ablation KW - Nanoparticles KW - ICP-MS PY - 2017 AN - OPUS4-41690 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -