TY - JOUR A1 - Büchner, Tina A1 - Drescher, Daniela A1 - Traub, Heike A1 - Schrade, P. A1 - Bachmann, S. A1 - Jakubowski, Norbert A1 - Kneipp, Janina T1 - Relating surface-enhanced Raman scattering signals of cells to gold nanoparticle aggregation as determined by LA-ICP-MS micromapping N2 - The cellular response to nanoparticle exposure is essential in various contexts, especially in nanotoxicity and nanomedicine. Here, 14-nm gold nanoparticles in 3T3 fibroblast cells are investigated in a series of pulse-chase experiments with a 30-min incubation pulse and chase times ranging from 15 min to 48 h. The gold nanoparticles and their aggregates are quantified inside the cellular ultrastructure by laser ablation inductively coupled plasma mass spectrometry micromapping and evaluated regarding the surface-enhanced Raman scattering (SERS) signals. In this way, both information about their localization at the micrometre scale and their molecular nanoenvironment, respectively, is obtained and can be related. Thus, the nanoparticle pathway from endocytotic uptake, intracellular processing, to cell division can be followed. It is shown that the ability of the intracellular nanoparticles and their accumulations and aggregates to support high SERS signals is neither directly related to nanoparticle amount nor to high local nanoparticle densities. The SERS data indicate that aggregate geometry and interparticle distances in the cell must change in the course of endosomal maturation and play a critical role for a specific gold nanoparticle type in order to act as efficient SERS nanoprobe. This finding is supported by TEM images, showing only a minor portion of aggregates that present small interparticle spacing. The SERS spectra obtained after different chase times show a changing composition and/or structure of the biomolecule corona of the gold nanoparticles as a consequence of endosomal processing. KW - Gold nanoparticles KW - Surface-enhanced Raman scattering KW - LA-ICP-MS KW - Fibroblast KW - Cell KW - Particle aggregation KW - Endosome PY - 2014 DO - https://doi.org/10.1007/s00216-014-8069-0 SN - 1618-2642 SN - 1618-2650 VL - 406 IS - 27 SP - 7003 EP - 7014 PB - Springer CY - Berlin AN - OPUS4-31718 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - Development of ICP-MS based tools for metallomics: To study the uptake and function of metals in cells T2 - SCIX 2014 CY - Reno, NV, USA DA - 2014-09-28 PY - 2014 AN - OPUS4-31895 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - Single Cell analysis by Elemental Mass Spectrometry T2 - AnalytiX 2013 CY - Suzhou, China DA - 2013-03-21 PY - 2013 AN - OPUS4-27963 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - Entwicklung von Methoden zur quantitativen Analyse von Nanopartikeln in biologischen Proben T2 - BfR-Seminar CY - Berlin, Germany DA - 2014-06-04 PY - 2014 AN - OPUS4-30780 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - High resolution laser ablation NWR-Image system for single cell imaging T2 - 2016 Winter Conference on Plasma Spectrochemistry CY - Tucson, Arizona, USA DA - 2016-01-10 PY - 2016 AN - OPUS4-35285 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - ICP-MS based methods for the quantitative analysis of nanoparticles in biological samples T2 - 5th International Symposium on Metallomics 2015 CY - Beijing, China DA - 2015-09-09 PY - 2015 AN - OPUS4-34524 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - Bio- and immuno-imaging by use of laser ablation ICP-MS N2 - Imuno-histochemical staining (IHC) of cancer biomarker on tissue sections is one of the most important analytical techniques for cancer diagnosis although standardization and quality management is tedious and differ significantly from clinic to clinic. Combining established IHC staining strategies with modern quantitative methods would increase it`s potential. We used element mass spectrometry (ICP-MS) and a new ink-jet printed internal standardization approach in combination with IHC staining. The printing strategy was utilized to improve elemental image resolution and reproducibility of paraffin embedded breast cancer tissue sections in laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) after conventional IHC staining as a model system to investigate the new capabilities of this technique. T2 - European Winter Conference on Plasma Spectrochemistry 2016 CY - Tucson, Arizona, USA DA - 10.01.2016 KW - Laser Ablation KW - ICP-MS KW - Bio-Imaging PY - 2016 AN - OPUS4-36492 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - Bio- and immuno-imaging by use of laser ablation ICP-MS N2 - Imuno-histochemical staining (IHC) of cancer biomarker on tissue sections is one of the most important analytical techniques for cancer diagnosis although standardization and quality management is tedious and differ significantly from clinic to clinic. Combining established IHC staining strategies with modern quantitative methods would increase it`s potential. We used element mass spectrometry (ICP-MS) and a new ink-jet printed internal standardization approach in combination with IHC staining. The printing strategy was utilized to improve elemental image resolution and reproducibility of paraffin embedded breast cancer tissue sections in laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) after conventional IHC staining as a model system to investigate the new capabilities of this technique. T2 - Ringvorlesung Analytik, Humboldt Universität zu Berlin CY - Berlin, Germany DA - 10.06.2016 KW - Laser ablation KW - Bio-imaging KW - Immuno-assays PY - 2016 AN - OPUS4-36476 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - Novel strategies for standardization and calibration in Laser Ablation ICP-MS N2 - Elemental imaging of biological samples (bio-imaging) using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) provides spatially resolved information on element distribution (qualitative and quantitative) in thin sections of biological samples. By rastering with a laser across the sample, a two-dimensional image of the elemental distribution can be reconstructed that shows the relative intensities of the respective elements. However the method is hampered by a lack of internal standards and quantification concepts, which will be discussed in this lecture in more detail. In liquid analysis the internal standard is used for drift correction and calibration and thus it is required that the standard should have similar physical and chemical properties similar to the analyte element during the pneumatic nebulization process, the transport, ionization and transmission into the ICP-MS. In laser ablation it should correct additionally for differences in the ablation process by laser instabilities or changes of sample properties to compensate variations or drift effects during the LA process. T2 - SALSA Lecture CY - Berlin, Germany DA - 14.06.2016 KW - Standardization KW - Calibration KW - LA-ICP-MS PY - 2016 AN - OPUS4-37164 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - Method development for metal detection at cellular levels by ICP-MS N2 - An overview about different analytical approaches will be presented of how to detect metals in individual biological cells by use of ICP-MS. For this purpose, we are using different sample introduction systems for ICP-MS for detection, imaging and quantification of metals at cellular levels. By use of laser ablation, we have studied the up-take by and distribution of nanoparticles in single cells. Recently we have developed staining techniques to measure protein and DNA content of cells and identifying the cell status by immunoassays using metal-tagging of antibodies. New research based on cell arrays will be shortly discussed. Using pneumatic nebulization and microdroplet generation, we have also studied the up-take of nanoparticles and toxic metals as well as essential elements in single cells using different ICP-MS mass spectrometric concepts (sector field instrument, triple-quad instrument, time of flight (CyTOF) instrument). The different ICP-MS based methods will be compared concerning their analytical figures of merit and their strengths and weaknesses will be evaluated. T2 - Projektmeeting CY - Bremen, Germany DA - 18.04.2018 KW - Single cell ICP-MS KW - LA-ICP-MS with cellular resolution KW - Nanoparticles PY - 2018 AN - OPUS4-44851 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - Method development for metal detection at cellular levels by ICP-MS N2 - An overview about different analytical approaches will be presented of how to detect metals in individual biological cells by use of ICP-MS. For this purpose, we are using different sample introduction systems for ICP-MS for detection, imaging and quantification of metals at cellular levels. By use of laser ablation, we have studied the up-take by and distribution of nanoparticles in single cells. Recently we have developed staining techniques to measure protein and DNA content of cells and identifying the cell status by immunoassays using metal-tagging of antibodies. New research based on cell arrays will be shortly discussed. Using pneumatic nebulization and microdroplet generation, we have also studied the up-take of nanoparticles and toxic metals as well as essential elements in single cells using different ICP-MS mass spectrometric concepts (sector field instrument, triple-quad instrument, time of flight (CyTOF) instrument). The different ICP-MS based methods will be compared concerning their analytical figures of merit and their strengths and weaknesses will be evaluated. T2 - 16th Czech-Slovak Spectroscopic Conference CY - Luhacovice, Czech Republic DA - 27.05.2018 KW - Single cell analysis KW - ICP-MS KW - Nanoparticles PY - 2018 AN - OPUS4-45161 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Drescher, D. A1 - Traub, Heike A1 - Büchner, T. A1 - Jakubowski, Norbert A1 - Kneipp, J. T1 - Properties of in situ generated gold nanoparticles in the cellular context N2 - Gold nanostructures that serve as probes for nanospectroscopic analysis of eukaryotic cell cultures can be obtained by the in situ reduction of tetrachloroauric acid (HAuCl4). To understand the formation process of such intracellularly grown particles depending on the incubation medium, the reaction was carried out with 3T3 fibroblast cells in three different incubation media, phosphate buffer, Dulbecco's Modified Eagle Medium (DMEM), and standard cell culture medium (DMEM with fetal calf serum). The size, the optical properties, the biomolecular corona, and the localization of the gold nanoparticles formed in situ vary for the different conditions. The combination of surface-enhanced Raman scattering (SERS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) microscopic mapping and transmission electron microscopy (TEM) provides complementary perspectives on plasmonic nanoparticles and non-plasmonic gold compounds inside the cells. While for the incubation with HAuCl4 in PBS, gold particles provide optical signals from the nucleus, the incubation in standard cell culture medium leads to scavenging of the toxic molecules and the formation of spots of high gold concentration in the cytoplasm without formation of SERS-active particles inside the cells. The biomolecular corona of nanoparticles formed in situ after incubation in buffer and DMEM differs, suggesting that different intracellular molecular species serve for reduction and stabilization. Comparison with data obtained from ready-made gold nanoparticles suggests complementary application of in situ and ex situ generated nanostructures for optical probing. KW - Nanoparticles KW - Laser ablation KW - ICP-MS KW - SERS KW - Cell PY - 2017 DO - https://doi.org/10.1039/C7NR04620K SN - 2040-3372 VL - 9 IS - 32 SP - 11647 EP - 11656 PB - The Royal Society of Chemistry RSC CY - Cambridge, UK AN - OPUS4-41871 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Jakubowski, Norbert A1 - Müller, Larissa A1 - Traub, Heike A1 - Esteban-Fernandez, Diego A1 - Panne, Ulrich A1 - Herrmann, Antje A1 - Schellenberger, E. A1 - Kneipp, Janina T1 - Lecture 5 Bio- and immuno-imaging by use of laser ablation ICP-MS N2 - ICP-MS is a well-established analytical method which excels by high accuracy, high dynamic range and extremely low limits of detection for most metals. Furthermore ICP-MS offers a very high multi-element coverage so that many elements of the periodic table can be detected simultaneously. In this series of lectures, we want to focus on the historical developments, fundamentals, instrumentation and novel applications of ICP-MS in the life and material sciences. KW - Imaging KW - Laser ablation ICP-MS PY - 2017 AN - OPUS4-40943 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Müller, L. A1 - Traub, Heike A1 - Jakubowski, Norbert ED - Prof. Dr. Golloch, Alfred T1 - Novel applications of lanthanoides as analytical or diagnostic tools in the life sciences by ICP-MS-based techniques N2 - Inductively coupled plasma mass spectrometry (ICP-MS) is a well-established analytical method for multi-elemental analysis in particular for elements at trace and ultra-trace levels. It has found acceptance in various application areas during the last decade. ICP-MS is also more and more applied for detection in the life sciences. For these applications, ICP-MS excels by a high sensitivity, which is independent of the molecular structure of the analyte, a wide linear dynamic range and by excellent multi-element capabilities. Furthermore, methods based on ICP-MS offer simple quantification concepts, for which usually (liquid) standards are applied, low matrix effects compared to other conventional bioanalytical techniques, and relative limits of detection (LODs) in the low pg g−1 range and absolute LODs down to the attomol range. In this chapter, we focus on new applications where the multi-element capability of ICP-MS is used for detection of lanthanoides or rare earth elements, which are applied as elemental stains or tags of biomolecules and in particular of antibodies. KW - ICP-MS KW - Life sciences KW - Mass cytometry KW - Laser ablation (LA)-ICP-MS KW - Bioimaging PY - 2017 SN - 978-3-11-036523-8 SP - Chapter 11, 301 EP - 320 PB - De Gruyter AN - OPUS4-40244 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - Method development for metal detection at cellular levels N2 - An overview about different analytical approaches will be presented of how to detect metals in individual biological cells by use of ICP-MS. For this purpose, we are using different sample introduction systems for ICP-MS for detection, imaging and quantification of metals at cellular levels. By use of laser ablation, we have studied the up-take by and distribution of nanoparticles in single cells. Recently we have developed staining techniques to measure protein and DNA content of cells and identifying the cell status by immunoassays using metal-tagging of antibodies. New research based on cell arrays will be shortly discussed. Using pneumatic nebulization and microdroplet generation, we have also studied the up-take of nanoparticles and toxic metals as well as essential elements in single cells using different ICP-MS mass spectrometric concepts (sector field instrument, triple-quad instrument, time of flight (CyTOF) instrument). The different ICP-MS based methods will be compared concerning their analytical figures of merit and their strengths and weaknesses will be evaluated. T2 - Metallomics 2017 CY - Vienna, Austria DA - 14.08.2017 KW - Single cell analysis KW - Laser ablation KW - Nanoparticles KW - ICP-MS PY - 2017 AN - OPUS4-41690 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - Method development for metal detection at cellular levels N2 - An overview about different analytical approaches will be presented of how to detect metals in individual biological cells by use of ICP-MS. For this purpose, we are using different sample introduction systems for ICP-MS for detection, imaging and quantification of metals at cellular levels. By use of laser ablation, we have studied the up-take by and distribution of metallic nanoparticles (Ag, Au) in single adherent cells (fibroblast cell line). Recently, we have developed staining techniques to image the protein (by a lanthanide containing chelate) and DNA (by an Ir-containing intercalator) distribution in single cells which can be combined with the nanoparticle studies. Additionally, we have developed an immunoassay by use of metal-tagged antibodies to identify the cell status of individual cells. Using pneumatic nebulization or microdroplet generation, we have also studied the up-take of nanoparticles and toxic metals as well as essential elements in single suspension cells using different ICP-MS mass spectrometric concepts (sector field instrument, triple-quad instrument, time of flight (CyTOF) instrument). For this purpose, the ICP-MS was operated in the single particle mode. First results of single cell ICP-MS (scICP-MS) will be presented for up-take of metallic (Ag) nanoparticles by THP 1 and macrophage cells and the strength of the different instruments will be discussed. T2 - 10th International Conference on Instrumental Methods of Analysis - IMA-2017 CY - Heraklion, Greece DA - 17.09.2017 KW - Imaging by LA-ICP-MS KW - Immunoassay KW - Metal-tagged antibodies PY - 2017 AN - OPUS4-42187 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Phukphatthanachai, Pranee A1 - Vogl, Jochen A1 - Traub, Heike A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - A new approach of using polyethylene frits for the quantification of sulphur in copper metals by isotope dilution LA-ICP-MS and comparison with conventional IDMS techniques N2 - Polyethylene (PE) frits were used to quantify sulphur in copper and its alloys by isotope dilution combined with LA-ICP-MS as an alternative approach to conventional sample preparation: the copper samples were spiked, the spiked samples were dissolved, the resulting solutions were absorbed in the PE frits and finally the PE frits were analysed by LA-ICP-MS. A prerequisite for such a support material is a low sulphur blank and thus PE was selected for this purpose. The absorption efficiency of the PE frits was studied for varying sulphur amounts ranging from 2 mg S to 80 mg S showing that more than 99.5% of the loaded sulphur was absorbed by the frit. The so prepared PE frits were measured by LA-ICP-MS and yielded a good linearity (R2 ¼ 0.999) for the sulphur ion intensities corresponding to sulphur amounts up to 40 mg S; the associated sensitivity is approximately 3.4 x 10⁴ cps μg⁻¹ for ³²S. For the validation of the developed procedure the reference materials BAM-M376a, BAM-228 and BAM-227 were applied such that 2 μg S, 5 μg S and 11 μg S were absorbed in the PE frits, respectively. These samples were pre-quantified for the adsorbed sulphur amount by external calibration LA-ICP-MS yielding sulphur amounts of 0.9 μg, 5.1 μg and 8.5 μg (quantified for ³²S only), respectively. Relative Standard deviations of the isotope ratios were below 5% in average (n ¼ 3 lines) in all cases (except for the pure spike solution). These samples were then analysed by LA-ICP-IDMS and the measurement results were validated by comparing them with the results obtained by conventional ICP-IDMS. The obtained relative expanded measurement uncertainties ranged between 10% and 26%. Pearson's coefficient was used to express the correlation between both techniques; the obtained value was 0.999 demonstrating a strong correlation. Contrary to most published LA-ICP-IDMS procedures, the developed procedure enables SI-traceability for the measurement results. The metrological traceability to the SI for the sulphur mass fractions in copper was established by an unbroken chain of comparisons, each accompanied by an uncertainty budget. Thus, the measurement results are considered reliable, acceptable and comparable within the stated measurement uncertainty. The metrological traceability chain from the kg down to mass fraction in the samples obtained by LA-ICP-IDMS is presented as well. KW - Laser ablation KW - IDMS KW - Traceability KW - Uncertainty KW - Purity PY - 2018 DO - https://doi.org/10.1039/c8ja00116b SN - 0267-9477 SN - 1364-5544 VL - 33 IS - 9 SP - 1506 EP - 1517 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-45899 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Drescher, Daniela A1 - Giesen, Charlotte A1 - Traub, Heike A1 - Panne, Ulrich A1 - Kneipp, Janina A1 - Jakubowski, Norbert T1 - Quantitative imaging of gold and silver nanoparticles in single eukaryotic cells by laser ablation ICP-MS N2 - Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was utilized for spatially resolved bioimaging of the distribution of silver and gold nanoparticles in individual fibroblast cells upon different incubation experiments. High spatial resolution was achieved by optimization of scan speed, ablation frequency, and laser energy. Nanoparticles are visualized with respect to cellular substructures and are found to accumulate in the perinuclear region with increasing incubation time. On the basis of matrix-matched calibration, we developed a method for quantification of the number of metal nanoparticles at the single-cell level. The results provide insight into nanoparticle/cell interactions and have implications for the development of analytical methods in tissue diagnostics and therapeutics. KW - Imaging KW - Cell KW - Nanoparticles KW - Laser ablation KW - ICP-MS PY - 2012 DO - https://doi.org/10.1021/ac302639c SN - 0003-2700 SN - 1520-6882 VL - 84 IS - 22 SP - 9684 EP - 9688 PB - American Chemical Society CY - Washington, DC AN - OPUS4-27440 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - Imaging of metals in biological and clinical samples by use of LA-ICP-MS: Challenges and limitations! T2 - 9. ASAC JunganalytikerInnen Forum CY - Vienna, Austria DA - 2013-06-21 PY - 2013 AN - OPUS4-28816 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Shigeta, K. A1 - Traub, Heike A1 - Panne, Ulrich A1 - Okino, A. A1 - Rottmann, L. A1 - Jakubowski, Norbert T1 - Application of a micro-droplet generator for an ICP-sector field mass spectrometer - optimization and analytical characterization N2 - A micro-droplet generator (µDG) sample introduction system was coupled to a sector field ICP-MS instrument to investigate the analytical figures of merit with respect to single cell analysis. The sector field instrument was operated for the first time in a fast scanning mode (E-scan) with the shortest time resolution of 100 µs to measure the single droplet time resolved and using the original detector in a pulse counting mode without modification of the existing electronics. For reduction of the droplet diameter a triple pulse mode of the droplet generator was applied and a droplet diameter down to 23 µm has been achieved for this investigation with a 100% transport efficiency of droplets. Signal duration times of single droplets of less than 500 µs have been measured. Overall detection efficiencies in the range of 10-3 counts per atom have been achieved and absolute limits of detection range between 120 ag for Fe and 1.1 ag for Mg as a mean value from 1000 droplet events. PY - 2013 DO - https://doi.org/10.1039/c2ja30207a SN - 0267-9477 SN - 1364-5544 VL - 28 IS - 5 SP - 646 EP - 656 PB - Royal Society of Chemistry CY - London AN - OPUS4-29447 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - Quantitative analysis of cell cultures treated with metallic nanoparticles using laser ablation ICP-MS T2 - SCIX 2014 CY - Reno, NV, USA DA - 2014-09-28 PY - 2014 AN - OPUS4-31896 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - ICP-MS based methods for the quantitative analysis of nanoparticles in biological samples T2 - 1st Joint Symposium on Nanotechnology - Bundesinstitut für Risikobewertung CY - Berlin, Gemany DA - 2015-03-05 PY - 2015 AN - OPUS4-32822 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - Laser Ablation ICP-MS: A new tool for Bio-Imaging T2 - Eingeladener Vortrag an der Universität Graz CY - Graz, Austria DA - 2015-05-22 PY - 2015 AN - OPUS4-33255 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lindner, Uwe A1 - Lingott, Jana A1 - Richter, Silke A1 - Jiang, W. A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Analysis of Gadolinium-based contrast agents in tap water with a new hydrophilic interaction chromatography (ZIC-cHILIC) hyphenated with inductively coupled plasma mass spectrometry N2 - Hydrophilic interaction chromatography (HILIC) coupled with inductively coupled plasma mass spectrometry (ICP-MS) were optimised for the direct determination of gadolinium-based contrast agents in tap water. In comparison to our previous work, a new developed zwitterionic HILIC column (ZIC-cHILIC) was used for speciation of Gd-containing contrast agents. The limit of quantification (LOQ) for the five contrast agents Gd-BOPTA, Gd-DPTA-BMA, Gd-BT-DO3A, Gd-DOTA and Gd-DTPA are in the range of 5–12 ng Gd per litre. Additionally, a new internal standard, Pr-DOTA, was investigated to correct intensity drifts, minor and major changes in the sample volumes and possible matrix effects. With the speciation method described, tap water samples from the area of Berlin were analysed and for the first time, three Gd species, Gd-BT-DO3A, Gd-DOTA and Gd-BOPTA, were found in tap water samples at concentrations of about 10–20 ng Gd per litre. These are the same Gd species which have been previously detected predominantly in surface waters of the Berlin area. KW - Gadolinium-based contrast agents KW - Hydrophilic interaction chromatography (HILIC) KW - Speciation KW - Inductively coupled plasma mass spectrometry (ICP-MS) KW - Internal standard KW - Berlin tap water PY - 2015 DO - https://doi.org/10.1007/s00216-014-8368-5 SN - 1618-2642 SN - 1618-2650 VL - 407 IS - 9 SP - 2415 EP - 2422 PB - Springer CY - Berlin AN - OPUS4-32982 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lindner, Uwe A1 - Lingott, Jana A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Detection of Gadolinium - Contrast agents in surface water and plants N2 - For years an increased concentration of gadolinium has been observed in the environment. This can be traced back to its use in medicine, as gadolinium has been used for about 25 years in hospitals as a contrast agent for magnetic resonance imaging (MRI). PY - 2014 SN - 1611-4132 SN - 1611-6038 VL - 34 IS - 1 SP - 20 EP - 23 PB - GIT-Verl., Wiley-VCH CY - Weinheim AN - OPUS4-30803 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chan, George C.-Y. A1 - Hieftje, Gary M. A1 - Omenetto, Nicoló A1 - Axner, Ove A1 - Bengtson, Arne A1 - Bings, Nicolas H. A1 - Blades, Michael W. A1 - Bogaerts, Annemie A1 - Bolshov, Mikhail A. A1 - Broekaert, José A.C. A1 - Chan, WingTat A1 - Costa-Fernández, José M. A1 - Crouch, Stanley R. A1 - De Giacomo, Alessandro A1 - D’Ulivo, Alessandro A1 - Engelhard, Carsten A1 - Falk, Heinz A1 - Farnsworth, Paul B. A1 - Florek, Stefan A1 - Gamez, Gerardo A1 - Gornushkin, Igor B. A1 - Günther, Detlef A1 - Hahn, David W. A1 - Hang, Wei A1 - Hoffmann, Volker A1 - Jakubowski, Norbert A1 - Karanassios, Vassili A1 - Koppenaal, David W. A1 - Kenneth Marcus, R. A1 - Noll, Reinhard A1 - Olesik, John W. A1 - Palleschi, Vincenzo A1 - Panne, Ulrich A1 - Pisonero, Jorge A1 - Ray, Steven J. A1 - Resano, Martín A1 - Russo, Richard E. A1 - Scheeline, Alexander A1 - Smith, Benjamin W. A1 - Sturgeon, Ralph E. A1 - Todolí, José-Luis A1 - Tognoni, Elisabetta A1 - Vanhaecke, Frank A1 - Webb, Michael R. A1 - Winefordner, James D. A1 - Yang, Lu A1 - Yu, Jin A1 - Zhang, Zhanxia T1 - Landmark Publications in Analytical Atomic Spectrometry: Fundamentals and Instrumentation Development N2 - The almost-two-centuries history of spectrochemical analysis has generated a body of literature so vast that it has become nearly intractable for experts, much less for those wishing to enter the field. Authoritative, focused reviews help to address this problem but become so granular that the overall directions of the field are lost. This broader perspective can be provided partially by general overviews but then the thinking, experimental details, theoretical underpinnings and instrumental innovations of the original work must be sacrificed. In the present compilation, this dilemma is overcome by assembling the most impactful publications in the area of analytical atomic spectrometry. Each entry was proposed by at least one current expert in the field and supported by a narrative that justifies its inclusion. The entries were then assembled into a coherent sequence and returned to contributors for a round-robin review. KW - Analytical atomic spectrometry KW - Spectroscopy KW - Instrumental analysis PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-621588 DO - https://doi.org/10.1177/00037028241263567 SN - 1943-3530 VL - 78 SP - 1 EP - 456 PB - Sage CY - London AN - OPUS4-62158 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lingott, Jana A1 - Lindner, Uwe A1 - Telgmann, Lena A1 - Esteban-Fernández, Diego A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Gadolinium-uptake by aquatic and terrestrial organisms-distribution determined by laser ablation inductively coupled plasma mass spectrometry N2 - The uptake of gadolinium containing chelates by plants and animals grown in exposed water or on soil irrigated with exposed water was investigated. Gd contrast agents was studied by monitoring the elemental distribution with laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). KW - Gadolinium-uptake KW - Speciation KW - HILIC KW - ICP-MS PY - 2016 DO - https://doi.org/10.1039/c5em00533g SN - 2050-7887 VL - 18 IS - 2 SP - 200 EP - 207 PB - Royal Society of Chemistry CY - Cambridge, UK AN - OPUS4-36281 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - Speciation of gadolinium based MRI contrast agents in environmental water samples using hydrophilic interaction chromatography coupled to inductively coupled plasma mass spectrometry T2 - Third International Symposium on Metallomics CY - Münster, Germany DA - 2011-06-15 PY - 2011 AN - OPUS4-24106 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - Measurement and detection of labelled antibodies: New applications in oncology an pathology T2 - AbCAP, Projekt Meeting BMBF CY - Berlin, Germany DA - 2011-03-31 PY - 2011 N1 - Geburtsname von Müller, Larissa: Wäntig, L. - Birth name of Müller, Larissa: Wäntig, L. AN - OPUS4-23808 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - Measurement and detection of labelled antibodies: New applicacations in oncology and pathology T2 - AbCAP, Projekt Meeting BMBF CY - Berlin, Germany DA - 2011-03-31 PY - 2011 N1 - Geburtsname von Müller, Larissa: Wäntig, L. - Birth name of Müller, Larissa: Wäntig, L. AN - OPUS4-24696 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Moreno-Gordaliza, E. A1 - Giesen, Charlotte A1 - Lázaro, A. A1 - Esteban-Fernández, D. A1 - Humanes, B. A1 - Canas, B. A1 - Panne, Ulrich A1 - Tejedor, A. A1 - Jakubowski, Norbert A1 - Gómez-Gómez, M.M. T1 - Elemental bioimaging in kidney by LA-ICP-MS as a tool to study nephrotoxicity and renal protective strategies in cisplatin therapies N2 - A laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS)-based methodology is presented for Pt, Cu, and Zn bioimaging on whole kidney 3 µm sagittal sections from rats treated with pharmacological doses of cisplatin, which were sacrificed once renal damage had taken place. Pt turned out to accumulate in the kidney cortex and corticomedullary junction, corresponding to areas where the proximal tubule S3 segments (the most sensitive cells to cisplatin nephrotoxicity) are located. This demonstrates the connection between platinum accumulation and renal damage proved by histological examination of HE-stained sections and evaluation of serum and urine biochemical parameters. Cu and Zn distribution maps revealed a significant displacement in cells by Pt, as compared to control tissues. A dramatic decrease in the Pt accumulation in the cortex was observed when cilastatin was coadministered with cisplatin, which can be related to its nephroprotective effect. Excellent imaging reproducibility, sensitivity (LOD 50 fg), and resolution (down to 8 µm) were achieved, demonstrating that LA–ICP–MS can be applied as a microscopic metal detector at cellular level in certain tissues. A simple and quick approach for the estimation of Pt tissue levels was proposed, based on tissue spiking. PY - 2011 DO - https://doi.org/10.1021/ac201933x SN - 0003-2700 SN - 1520-6882 VL - 83 IS - 20 SP - 7933 EP - 7940 PB - American Chemical Society CY - Washington, DC AN - OPUS4-24965 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Giesen, Charlotte A1 - Mairinger, T. A1 - Khoury, L. A1 - Müller, Larissa A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Multiplexed immunohistochemical detection of tumor markers in breast cancer tissue using laser ablation inductively coupled plasma mass spectrometry N2 - We optimized multiplexed immunohistochemistry (IHC) on breast cancer tissue. Up to 20 tumor markers are routinely evaluated for one patient, and thus, a common analysis results in a series of time consuming staining procedures. As an alternative, we used lanthanides for labeling of primary antibodies, which are applied in IHC. Laser ablation (LA) ICPMS was elaborated as a detection tool for multiplexed IHC of tissue sections. In this study, we optimized sample preparation steps and LA ICPMS parameters to achieve a sufficient signal-to-background ratio. The results prove the high selectivity of applied antibodies, which was sustained after labeling. Up to three tumor markers (Her 2, CK 7, and MUC 1) were detected simultaneously in a single multiplex analysis of a 5 µm thin breast cancer tissue at a laser spot size of 200 µm. Furthermore, the LA ICPMS results indicate a significantly higher expression level of MUC 1 compared to Her 2 and CK 7, which was not obvious from the conventionally stained tissue sections. PY - 2011 DO - https://doi.org/10.1021/ac2016823 SN - 0003-2700 SN - 1520-6882 N1 - Geburtsname von Müller, Larissa: Wäntig, L. - Birth name of Müller, Larissa: Wäntig, L. VL - 83 IS - 21 SP - 8177 EP - 8183 PB - American Chemical Society CY - Washington, DC AN - OPUS4-24966 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Giesen, Charlotte A1 - Müller, Larissa A1 - Mairinger, T. A1 - Drescher, Daniela A1 - Kneipp, Janina A1 - Roos, P.H. A1 - Panne, Ulrich A1 - Jakubowski, Norbert T1 - Iodine as an elemental marker for imaging of single cells and tissue sections by laser ablation inductively coupled plasma mass spectrometry N2 - A new laser ablation (LA)-ICP-MS method for single cell and cell nucleus imaging was developed. Therein, iodine was employed as an elemental dye for fibroblast cells and for thin tissue sections. At an incubation time of 60 s, iodine is located mainly within the cell nuclei. This effect was illustrated in fibroblast cells, and iodine signal within the cell nucleus was as high as 5 × 104 cps at 4 µm laser spot size. The surrounding cytoplasm was iodinated as well, but to a lesser extent. The spatial resolution attained was sufficient to detect even smaller cell nuclei within a liver biopsy tissue. Furthermore, iodine was successfully employed for biomolecule labeling and we demonstrated that iodine signal increased with increasing thickness of a palatine tonsil tissue. Thus, the use of iodine as an internal standard to correct for tissue inhomogeneities in LA-ICP-MS was investigated for the simultaneous detection of two tumor markers (Her 2 and CK 7) in breast cancer tissue. Additionally, lanthanide background resulting from glass ablation can be corrected for by Eu standardization. PY - 2011 DO - https://doi.org/10.1039/c1ja10227c SN - 0267-9477 SN - 1364-5544 N1 - Geburtsname von Müller, Larissa: Wäntig, L. - Birth name of Müller, Larissa: Wäntig, L. VL - 26 IS - 11 SP - 2160 EP - 2165 PB - Royal Society of Chemistry CY - London AN - OPUS4-24964 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - Development of laser-ablation-ICP-MS based immunoassays T2 - Projektbesprechung Prof. Schlüter, Universitätsklinikum Hamburg-Eppendorf CY - Hamburg, Germany DA - 2011-03-23 PY - 2011 N1 - Geburtsname von Müller, Larissa: Wäntig, L. - Birth name of Müller, Larissa: Wäntig, L. AN - OPUS4-25362 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - Speciation von Gd-haltigen MRI Kontrastmitteln in Berliner Flüssen und Seen T2 - GDCh-Wissensschaftsforum Chemie 2011 CY - Bremen, Germany DA - 2011-09-05 PY - 2011 AN - OPUS4-25364 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - Bioimaging: Measurement and detection of labelled antibodies: New applications in toxicology, oncology and pathology T2 - CCQM 2011 CY - Paris, France DA - 2011-04-12 PY - 2011 N1 - Geburtsname von Müller, Larissa: Wäntig, L. - Birth name of Müller, Larissa: Wäntig, L. AN - OPUS4-25363 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - Development of laser-ablation-ICP-MS based immunoassays T2 - European Winter Conference on Plasma Spectrochemistry CY - Zaragoza, Spain DA - 2011-01-30 PY - 2011 N1 - Geburtsname von Müller, Larissa: Wäntig, L. - Birth name of Müller, Larissa: Wäntig, L. AN - OPUS4-25372 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - Speciation of Gd-Based MRI Contrast Agents in Environmental Water Samples T2 - FACSS 2011 CY - Reno, NV, USA DA - 2011-10-02 PY - 2011 AN - OPUS4-25365 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - The Role of Modern Plasma-based Spectroscopies in the Material and Life Sciences T2 - 2012 Asia-Pacific Winter Conference on Plasmaspectrochemistry CY - Jeju, South Korea DA - 2012-08-26 PY - 2012 N1 - Geburtsname von Müller, Larissa: Wäntig, L. - Birth name of Müller, Larissa: Wäntig, L. AN - OPUS4-26472 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Giesen, Charlotte A1 - Jakubowski, Norbert A1 - Panne, Ulrich A1 - Weller, Michael G. T1 - Comparison of ICP-MS and photometric detection of an immunoassay for the determination of ochratoxin A in wine N2 - An immunoassay was developed for ochratoxin A (OTA) detection in wine and two completely different detection methods were compared: ICP-MS and photometry. For labelling, we applied secondary antibodies conjugated with gold nanoparticles for ICP-MS and with horseradish peroxidase for photometric detection, respectively. Detection limits of the assay were determined as 0.003 µg L-1 for both detection methods. OTA in wine was determined below the EU limit value of 2 µg kg-1. The measurement range was between 0.01 and 1 µg L-1 for ICP-MS and photometric detection. Assay precision detected by ICP-MS and photometry were similar showing that precision of the detection method has only a minor effect on total assay precision. By using BSA as a buffer additive to minimize nonspecific binding, we could also confirm that OTA strongly binds to BSA. In a comparison study of several additives, casein was found to be preferable. PY - 2010 DO - https://doi.org/10.1039/c0ja00009d SN - 0267-9477 SN - 1364-5544 VL - 25 IS - 10 SP - 1567 EP - 1572 PB - Royal Society of Chemistry CY - London AN - OPUS4-22704 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Giesen, Charlotte A1 - Jakubowski, Norbert A1 - Panne, Ulrich A1 - Weller, Michael G. T1 - Ochratoxin-A-Bestimmung in Wein mittels eines ICP-MS-basierten Immunoassays PY - 2010 UR - http://www.analytik-news.de/Fachartikel/Volltext/BAM2.pdf SP - 1 EP - 6 PB - Dr. Beyer Internet-Beratung CY - Ober-Ramstadt AN - OPUS4-22702 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gopala, Anil A1 - Zellmann, M. A1 - Kipphardt, Heinrich A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Mass spectrometric study of the impurity profile in Zn during reduction-distillation of ZnO with activated and inactivated Al N2 - In this work, we report on the application of hyphenated gas source mass spectrometry to study and understand the mechanism of the reduction-distillation of ZnO using Al powder as reductant in its activated and inactivated form. The experiments revealed that the purity of the Zn metal produced were superior using activated Al with respect to inactivated Al, i.e., m5N8 (99.9998% metallic based) versus m5N3. The achieved purity levels of Zn and the absence of high volatile Cd, Mg, and Sb impurities in the gas phase and the material collected were explained with respect to the impurity elements free-energy values, vapor pressure data, and an observed scavenging effect of the Ta crucible, which was supported by the on-line observed mass spectrometric profiles of the residual gas. PY - 2010 DO - https://doi.org/10.1016/j.jasms.2010.04.009 SN - 1044-0305 VL - 21 IS - 9 SP - 1620 EP - 1623 PB - Elsevier CY - New York, NY AN - OPUS4-21910 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gopala, Anil A1 - Jakubowski, Norbert A1 - Panne, Ulrich A1 - Kipphardt, Heinrich T1 - Real time monitoring of chemical transformations during catalytic reduction using gas source mass spectrometry: carbon/zinc carbonate hydroxide N2 - We report herein the utilization of a vacuum reduction distillation system (VRDS) coupled with mass spectrometry (MS) to characterize chemical transformations in thermal analysis. The system initially designed to monitor metal purification by distillation is applied for the first time to the catalytic reaction of in situ formed nickel oxide during the carbothermic reduction of zinc oxide. PY - 2010 DO - https://doi.org/10.1039/c004179c SN - 0267-9477 SN - 1364-5544 VL - 25 SP - 1378 EP - 1380 PB - Royal Society of Chemistry CY - London AN - OPUS4-21911 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Richter, Janine A1 - Fettig, I. A1 - Philipp, Rosemarie A1 - Jakubowski, Norbert A1 - Panne, Ulrich A1 - Fisicaro, P. A1 - Alasonati, E. T1 - Determination of tributyltin in whole water matrices under the European water framework directive N2 - Monitoring of water quality is important to control water pollution. Contamination of the aquatic systemhas a large effect on human health and the environment. Under the European Water Framework Directive(WFD) 2000/60/EC and the related directive on environmental quality standards (EQS) in the field of waterpolicy 2008/105/EC, the need for sensitive reference methods was highlighted. Since tributyltin (TBT) isone of the WFD listed priority substances a method was developed which is capable to qualify and quantifythe pollutant at the required low WFD EQS of 0.2 ng L⁻¹ in whole water bodies, i.e. in non-filtered watersamples with dissolved organic carbon and suspended particulate matter. Therefore special attention waspaid on the interaction of TBT with the suspended particulate matter and humic substances to obtain acomplete representation of the pollution in surface waters. Different water samples were investigatedvarying the content of organic dissolved and suspended matter. Quantification was performed usingspecies-specific isotope dilution (SSID) and gas chromatography with inductively coupled plasma massspectrometry (GC-ICP-MS). Different sample treatment strategies were evaluated and compared. Theprocess of internal standard addition was investigated and optimized, hence the equilibrium betweeninternal standards and matrix is of primary importance to perform accurate SSID. Samples spiked at EQSlevel were analyzed with a recovery between 95 and 105 %. Additionally real surface water samples wereinvestigated and the TBT concentration for the whole water body was determined and compared withconventional routine analysis method. KW - Tributyltin (TBT) KW - Environmental quality standard (EQS) KW - Isotope dilution KW - Humic acid KW - Surface water KW - Suspended particulate matter PY - 2016 DO - https://doi.org/10.1016/j.chroma.2016.06.068 SN - 0021-9673 VL - 1459 SP - 112 EP - 119 AN - OPUS4-36930 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - Metal detection at cellular levels by use of laser ablation ICP-MS N2 - We are using laser ablation (LA)-ICP-MS to image the local distribution of elements (metals and hetero-elements) directly or (metallo-)proteins by metal-tagged antibodies in cells and tissue indirectly. Different applications will be discussed to demonstrate the state of the art and to visualize the elemental distribution pattern in soft bio-materials (tissue, single cells). In the first application Pt-containing drugs for cancer treatment are investigated and elemental distribution pattern are shown for tissue samples from animal experiments. Different standardization and quantification schemes including isotope dilution analysis will be discussed. In the second application, which is dedicated to toxicological research, the up-take of nano-particles by single cells are discussed and metal containing stains are used to visualize the distribution of nano-particles, proteins and DNA in a single cell simultaneously. This information is correlated with the distribution of the nanoparticles to identify the cell compartments where nano-particles are enriched. Quantification schemes have been developed to transform the measured intensities into number of particles up taken by the cells. In the third and last application LA-ICP-MS is applied to visualize the local distribution of proteins, which are used as bio-markers for prostate cancer. For this purpose, biopsy samples from patients have been simultaneously stained by eight differently metal-tagged antibodies in a multiplex approach. Detection of house-keeping proteins serves as internal standards to overcome differences in protein expression. Additionally ink-jet printing of metal doped inks onto the surface of these tissue samples has been applied for internal standardization and drift corrections. Finally future trends to develop an “elemental microscope” will be discussed. T2 - PITTCON 2017 CY - Chicago, IL, USA DA - 05.03.2017 KW - Element-microscopy KW - LA-ICP-MS KW - Nanoparticles KW - Immuno-assays PY - 2017 AN - OPUS4-39364 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - Direct solid analysis ba LA- and ETV-ICP-OES/MS T2 - 4th Asia-Pacific Winter Conference on Spectrochemical Analysis CY - Beijing, China DA - 2010-12-01 PY - 2010 N1 - Geburtsname von Müller, Larissa: Wäntig, L. - Birth name of Müller, Larissa: Wäntig, L. AN - OPUS4-23239 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Börno, Fabian A1 - Richter, Silke A1 - Deiting, D. A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Direct multi-elementanalysis of plastic materials via solid sampling electrothermal vaporization inductively coupled plasma optical emission spectroscopy N2 - In this work the determination of Cd, Cu, Cr, Fe and Sb as organic and inorganic additives in in-house plastic materials (ABS, LDPE) using electrothermal vaporization combined with inductively coupled plasma optical emission spectroscopy is described. The influence of CCl2F2 as gaseous halogenation modifier was investigated. Especially for the carbide forming elements the sensitivity was improved and the memory effects were significantly reduced. Calibration was performed by external calibration and standard addition with aqueous standard solutions added directly into the sample boats. Absolute limits of detection (3s-criterion) range between 0.1 ng (Cd) and 9 ng (Fe) which corresponds to relative values of 0.1 mg kg-1 and 1.6 mg kg-1, respectively, taking 5 mg as typical sample mass. The detection limits are sufficient to monitor the element contents of plastic materials according to European directives such as European directive on the safety of toys. The developed ETV-ICP-OES method allows a fast analysis with a high sample throughput (3 minutes per analysis), low sample consumption and good trueness and precision for the analyzed elements. Sample preparation is reduced to ashing the samples in a muffle furnace. Furthermore, measurements are possible regardless of the chemical form in the additives. For verification the results obtained with the developed method were compared with measurement results of independent methods ICP-MS/OES after digestion. In addition Cd, Cr and Pb were determined in a solid plastic reference material BAM-H010 to confirm the applicability and accuracy of the method. PY - 2015 DO - https://doi.org/10.1039/c4ja00442f SN - 0267-9477 SN - 1364-5544 SP - 1 EP - 8 PB - Royal Society of Chemistry CY - London AN - OPUS4-32581 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lindner, Uwe A1 - Lingott, Jana A1 - Richter, Silke A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Speciation of gadolinium in surface water samples and plants by hydrophilic interaction chromatography hyphenated with inductively coupled plasma mass spectrometry N2 - Hydrophilic interaction chromatography (HILIC) coupled with inductively coupled plasma mass spectrometry (ICP-MS) was optimized for speciation analysis of gadolinium-based contrast agents in environmental samples, in particular surface river waters and plants. Surface water samples from the Teltow channel, near Berlin, were investigated over a distance of 5 km downstream from the influx of a wastewater treatment plant. The total concentration of gadolinium increased significantly from 50 to 990 ngL-1 due to the influx of the contrast agents. After complete mixing with the river water, the concentration remained constant over a distance of at least 4 km. Two main substances [Dotarem® (Gd-DOTA) and Gadovist® (Gd-BT-DO3A)] have been identified in the river water using standards. A gadolinium-based contrast agent, possibly Gd-DOTA (Dotarem®), was also detected in water plant samples taken from the Teltow channel. Therefore, uptake of contrast agents [Gadovist® (Gd-BTDO3A), Magnevist® (Gd-DTPA), Omniscan® (Gd-DTPA-BMA), Dotarem® (Gd-DOTA), and Multihance® (Gd-BOPTA)] by plants was investigated in a model experiment using Lepidium sativum (cress plants). HILIC–ICP-MS was used for identification of different contrast agents, and a first approach for quantification using aqueous standard solutions was tested. For speciation analysis, all investigated contrast agents could be extracted from the plant tissues with a recovery of about 54 % for Multihance® (Gd-BOPTA) up to 106 % for Gadovist® (Gd-BT-DO3A). These experiments demonstrate that all contrast agents investigated are transported from the roots to the leaves where the highest content was measured. KW - Gadolinium-based contrast agents KW - Hydrophilic interaction chromatography (HILIC) KW - Speciation KW - Inductively coupled plasma mass spectrometry (ICP-MS) KW - Plants KW - Surface water PY - 2013 DO - https://doi.org/10.1007/s00216-012-6643-x SN - 1618-2642 SN - 1618-2650 VL - 405 IS - 6 SP - 1865 EP - 1873 PB - Springer CY - Berlin AN - OPUS4-27929 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grunert, B. A1 - Saatz, Jessica A1 - Hoffmann, Katrin A1 - Appler, F. A1 - Lubjuhn, Dominik A1 - Jakubowski, Norbert A1 - Resch-Genger, Ute A1 - Emmerling, Franziska A1 - Briel, A. T1 - Multifunctional rare-earth element nanocrystals for cell labeling and multimodal imaging N2 - In this work, we describe a simple solvothermal route for the synthesis of Eu3+-doped gadolinium orthovanadate nanocrystals (Eu:GdVO4−PAA) functionalized with poly(acrylic)acid (PAA), that are applicable as cell labeling probes for multimodal cellular imaging. The Eu3+ doping of the vanadate matrix provides optical functionality, due to red photoluminescence after illumination with UV light. The Gd3+ ions of the nanocrystals reduce the T1 relaxation time of surrounding water protons, allowing these nanocrystals to act as a positive MRI contrast agent with a r1 relaxivity of 1.97 mM−1 s−1. Low background levels of Eu3+, Gd3+, and V5+ in biological systems make them an excellent label for elemental microscopy by Laser Ablation (LA)-ICP-MS. Synthesis resulted in polycrystalline nanocrystals with a hydrodynamic diameter of 55 nm and a crystal size of 36.7 nm, which were further characterized by X-ray diffraction (XRD), photoluminescence spectroscopy (PL) and transmission electron microscopy (TEM). The multifunctional nanocrystals were subsequently used for intracellular labeling of both human adipose-derived stem cells (MSCs) and A549 (adenocarcinomic human alveolar basal epithelial) cells. KW - Bioimaging KW - Nanoparticle KW - Multimodal KW - Lanthanide PY - 2018 DO - https://doi.org/10.1021/acsbiomaterials.8b00495 SN - 2373-9878 VL - 4 IS - 10 SP - 3578 EP - 3587 PB - ACS Publications CY - Washington, USA AN - OPUS4-46244 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pisonero, J. A1 - Bouzas-Ramos, D. A1 - Traub, Heike A1 - Cappella, Brunero A1 - Alvarez-Llamas, C. A1 - Richter, Silke A1 - Mayo, J. C. A1 - Costa-Fernandez, J. M. A1 - Bordel, N. A1 - Jakubowski, Norbert T1 - Critical evaluation of fast and highly resolved elemental distribution in single cells using LA-ICP-SFMS N2 - The analytical potential of a nanosecond laser ablation inductively coupled plasma mass spectrometer (ns-LA-ICP-SFMS) system, equipped with an ultra-fast wash-out ablation chamber, is critically investigated for fast and highly spatially resolved (∼μm) qualitative elemental distribution within single cells. Initially, a low surface roughness (< 10 nm) thin In–SnO2 layer (total coating thickness ∼200 nm) deposited on glass is employed to investigate the size, morphology and overlapping of laser-induced craters obtained at different laser repetition rates, making use of Atomic Force Microscopy (AFM). Conical craters with a surface diameter of about 2 µm and depths of about 100 nm were measured after a single laser shot. Furthermore, the influence of the sampling distance (i.e. distance between the sample surface and the inner sniffer of the ablation chamber) on the LA-ICP-MS ion signal wash-out time is evaluated. A significant decrease of the transient 120Sn+ ion signal is noticed after slight variations (±200 μm) around the optimum sampling position. Ultra-fast wash-outs (< 10 ms) are achieved reducing the aerosol mixing from consecutive laser shots even when operating the laser at high repetition rates (25 – 100 Hz). Fast and highly spatially resolved images of elemental distribution within mouse embryonic fibroblast cells (NIH/3T3 fibroblast cells) and human cervical carcinoma cells (HeLa cells), incubated with gold nanoparticles (Au NPs) and Cd-based quantum dots (QDs), respectively, are determined at the optimized operating conditions. Elemental distribution of Au and Cd in single cells is achieved using a high scanning speed (50 µm/s) and high repetition rate (100 Hz). The results obtained for the distribution of fluorescent Cd-based QDs within the HeLa cells are in good agreement with those obtained by confocal microscopy. The size, morphology and overlapping of laser-induced craters in the fixed cells are also investigated using AFM, observing conical craters with a surface diameter of about 2.5 µm and depths of about 800 nm after a single laser shot. KW - Laser ablation KW - ICP-MS KW - Nanoparticle KW - Atomic Force Microscopy KW - Cell PY - 2018 DO - https://doi.org/10.1039/c8ja00096d SP - 1 EP - 9 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-45564 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -