TY - GEN A1 - Jakubowski, Norbert A1 - Schmidt, B. A1 - Sötebier, C. A1 - Pergantis, S. A1 - Shigeta, K. T1 - Single particle and single cell ICP-MS N2 - ICP-MS is a well-established analytical method which excels by high accuracy, high dynamic range and extremely low limits of detection for most metals. Furthermore ICP-MS offers a very high multi-element coverage so that many elements of the periodic table can be detected simultaneously. In this series of lectures, we want to focus on the historical developments, fundamentals, instrumentation and novel applications of ICP-MS in the life and material sciences. KW - Single particle ICP-MS KW - Single cell ICP-MS PY - 2017 AN - OPUS4-40952 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Jakubowski, Norbert T1 - Lecture 7: Speciation N2 - ICP-MS is a well-established analytical method which excels by high accuracy, high dynamic range and extremely low limits of detection for most metals. Furthermore ICP-MS offers a very high multi-element coverage so that many elements of the periodic table can be detected simultaneously. In this series of lectures, we want to focus on the historical developments, fundamentals, instrumentation and novel applications of ICP-MS in the life and material sciences. KW - Speciation KW - SDS-PAGE KW - GC-ICP-MS PY - 2017 SP - 1 EP - 74 CY - Berlin AN - OPUS4-41721 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - Elemental Mass Spectrometry: Metallomics and Beyond, Workshop 3: Elemental Mass Spectrometry and Proteomics on Clinical and Biological Samples T2 - 18th International Mass Spectrometry Conference CY - Bremen, Germany DA - 2009-08-30 PY - 2009 AN - OPUS4-19853 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - Imaging by laser ablation ICP-SFMS: strength and weakness T2 - 8th International Sector Field ICP-MS Conference CY - Ghent, Belgium DA - 2009-09-14 PY - 2009 AN - OPUS4-19854 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - Bio-Elemental Imaging by Use of Laser Ablation Inductively Coupled Plasma Mass Sepctrometry, Workshop: Elemental Mass Spectrometry and Proteonomics on Clinical and Biological Samples T2 - 18th International Mass Spectrometry Conference CY - Bremen, Germany DA - 2009-08-30 PY - 2009 AN - OPUS4-19852 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pedrero, Z. A1 - Murillo, S. A1 - Cámara, C. A1 - Schram, E. A1 - Luten, J.B. A1 - Feldmann, I. A1 - Jakubowski, Norbert A1 - Madrid, Y. T1 - Selenium speciation in different organs of African catfish (Clarias gariepinus) enriched through a selenium-enriched garlic based diet N2 - Speciation of Se in fish is needed to elucidate the metabolism of this element in living organisms in the marine environment. In this paper, selenium concentration and its species distribution in several organs and tissues (liver, gills, kidney, muscle and gastrointestinal tract) of African catfish fed with a selenium-enriched garlic based diet was studied. The intention of this paper is focused on both the investigation of selenium distribution in the soluble protein fraction and the detection of selenoaminoacids. Thus, two different procedures have been developed. In the first procedure, screening of selenium in proteins in the Tris-buffer soluble fraction of different tissues was carried out by size exclusion chromatography-inductively coupled plasma-mass spectrometry (SEC-ICP-MS) and by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) after sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) separation and electroblotting onto membranes. For the amino acid analysis, several sample treatments for Se-species extraction, based on enzymatic hydrolysis, were compared. The best results were obtained for incubation at controlled temperature. Application of several sample treatments in conjunction with different chromatographic techniques (reverse phase, anion exchange and ion exchange/size exclusion) was crucial to unambiguous Se-species identification. In Se-enriched African catfish a noticeable increase in the content of selenium in different organs was observed, except for the liver, where the Se level remained unaltered. The kidney was the Se-target organ in animals fed with enriched Se food. Selenomethionine (SeMet) was the main Se species identified in fillet extracts, whereas the presence of selenocysteine (SeCys) was detected in the liver and both SeMet and SeCys were present in the kidney. PY - 2011 DO - https://doi.org/10.1039/c003889j SN - 0267-9477 SN - 1364-5544 VL - 26 IS - 1 SP - 116 EP - 125 PB - Royal Society of Chemistry CY - London AN - OPUS4-22981 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - Elementmassenspektrometrie und Metallomics als neue Herausforderung für die Lebenswissenschaften T2 - Kolloquium, Forschungszentrum Jülich CY - Jülich, Germany DA - 2009-12-09 PY - 2009 AN - OPUS4-20378 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Roos, P.H. A1 - Jakubowski, Norbert T1 - Methods for the discovery of low-abundance biomarkers for urinary bladder cancer in biological fluids N2 - For the study of bladder cancer and the identification of respective tumor markers, blood and, in particular, urine constitute suitable sources of biological material, while both harboring their specific challenges for analytics concerning low-abundance biomarkers. Dissolved proteins and nucleic acids as well as cells and cell-bound molecules can be the analytes. In urine, exfoliated bladder tumor cells have to be identified and in blood, circulating tumor cells have to be detected among huge amounts of other cells. For the detection of both low-abundance cells and molecules, their specific enrichment prior to analysis is advantageous or even necessary. Adapted methods for the analysis of proteomes and subproteomes by 2D-gel electrophoresis, multidimensional chromatography and antibody arrays are discussed. Analysis of nucleic acid-based markers exploits the high amplification power of PCR and modified PCR combined with previous (subtransciptomes) or subsequent (microarray) enrichment to sensitively and specifically detect markers. DNA mutations, DNA-methylation status and apoptotic DNA fragments, as well as levels of ribonucleic acids including microRNAs, can be analyzed by means of these methods. Finally, the challenge of identifying circulating tumor cells and assigning them to their original tissue is critically discussed. PY - 2010 DO - https://doi.org/10.4155/BIO.09.174 SN - 1757-6180 VL - 2 IS - 2 SP - 295 EP - 309 PB - Future Science Group CY - London AN - OPUS4-20981 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nießner, R. A1 - Broekaert, J.A. A1 - Bron, M. A1 - Einax, J. A1 - Emons, H. A1 - Haisch, C. A1 - Huber, C. A1 - Jakubowski, Norbert A1 - Knopp, D. A1 - Popp, J. A1 - Schäferling, M. T1 - Analytische Chemie 2008/2009 PY - 2010 DO - https://doi.org/10.1002/nadc.201063123 SN - 1439-9598 SN - 1521-3854 VL - 58 IS - 3 SP - 223 EP - 235 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-21177 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - Heritage of Prof. Dr. Ing. Klaus Gustav Heumann: Selected Highlights T2 - 2010 Winter Conference CY - Fort Myers, FL, USA DA - 2010-01-04 PY - 2010 AN - OPUS4-21161 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Larissa A1 - Jakubowski, Norbert A1 - Roos, P.H. T1 - Multi-parametric analysis of cytochrome P450 expression in rat liver microsomes by LA-ICP-MS N2 - Quantitative analysis of cytochrome P450 (CYP) patterns of cells and tissues is an important aspect in toxicological and pharmacological research as this group of enzymes is largely involved in the metabolism of toxic compounds and drugs. Here we present a method for the multi-parametric and simultaneous quantitative determination of several cytochromes P450 in liver microsomes of untreated and inducer treated rats. The method is based on the binding of specifically lanthanide labelled antibodies to electrophoretically separated and blotted CYP proteins and their subsequent identification and quantification by LA-ICP-MS. CYP1A1, CYP2B1, CYP2C11, CYP2E1 and CYP3A1 were simultaneously quantified and the patterns between microsomal samples were compared. Microsomes of rats treated with 3-methylcholanthrene, phenobarbital and dexamethasone showed increased levels of CYP1A1, CYP2B1 and CYP3A1, respectively. These results coincide with data obtained by independent methods for CYP quantification, i.e. ethoxyresorufin O-deethylase activity for CYP1A1 and pentoxyresorufin O-depentylase for CYP2B1. The presented method is useful for multi-parametric CYP profiling and has further large potential with respect to the number of analysed parameters/proteins and sensitivity. PY - 2011 DO - https://doi.org/10.1039/c0ja00077a SN - 0267-9477 SN - 1364-5544 N1 - Geburtsname von Müller, Larissa: Wäntig, L. - Birth name of Müller, Larissa: Wäntig, L. VL - 26 IS - 2 SP - 310 EP - 319 PB - Royal Society of Chemistry CY - London AN - OPUS4-23465 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jakubowski, Norbert A1 - Prohaska, T. A1 - Rottmann, L. A1 - Vanhaecke, F. T1 - Inductively coupled plasma- and glow discharge plasma-sector field mass spectrometry - Part I. Tutorial: Fundamentals and instrumentation N2 - The aim of this series of two reviews is to introduce the basic concepts of ICP and GD sector field instruments, to discuss their peculiarities and performance, to present selected analytical applications for demonstration of the 'state of the art' and, finally, to identify possible future trends and developments. Part I focuses on fundamentals, instrumentation and operation of instruments to give an overview of the capabilities of the actual commercially available instrumentation, whereas selected applications will be discussed in detail in part II. PY - 2011 DO - https://doi.org/10.1039/c0ja00161a SN - 0267-9477 SN - 1364-5544 VL - 26 IS - 4 SP - 693 EP - 726 PB - Royal Society of Chemistry CY - London AN - OPUS4-23466 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jakubowski, Norbert T1 - Inductively coupled plasma- and glow discharge plasma-sector field mass spectrometry - Part II. Applications N2 - Part I of this series of two reviews focused on fundamentals, instrumentation and operation of sector field instruments to give a proper overview of the capabilities of the actual commercially available instrumentation. In part II, selected applications of the last decade are discussed in detail concluding with pinpointing possible future trends and current developments. KW - ICP KW - SF KW - MS PY - 2011 DO - https://doi.org/10.1039/c0ja00007h SN - 0267-9477 SN - 1364-5544 VL - 26 IS - 4 SP - 727 EP - 757 PB - Royal Society of Chemistry CY - London AN - OPUS4-23467 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - Combination of imaging by laser ablation ICP-MS and detection of element-tagged antibodies for application in Western Blot assays T2 - BCEIA Conference CY - Beijing, China DA - 2009-11-25 PY - 2009 AN - OPUS4-20585 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - The Role of Modern Plasma-based Spectroscopies for Development and Characterization of Reference Materials T2 - Winter Conference on Plasma Spectrochemistry CY - Fort Myers, FL, USA DA - 2010-01-04 PY - 2010 AN - OPUS4-20838 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - ICP-MS eine neue Methode für die Bioanalytik? T2 - Johannes Gutenberg-Universität Mainz, GRK-Seminar "Elementspeziation" CY - Mainz, Germany DA - 2010-06-15 PY - 2010 N1 - Geburtsname von Müller, Larissa: Wäntig, L. - Birth name of Müller, Larissa: Wäntig, L. AN - OPUS4-21990 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Jakubowski, Norbert A1 - Prohaska, T. A1 - Roos, P.H. ED - Beauchemin, D. ED - Matthews, D. T1 - Polyatomic ions with double-focusing magnet sector mass spectrometers KW - ICP-MS KW - Sektorfeldgeräte PY - 2010 SN - 978-0-08-043804-7 VL - 5 SP - 132 EP - 150 PB - Elsevier CY - Oxford, UK AN - OPUS4-22237 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Roos, P.H. A1 - Jakubowski, Norbert T1 - Cytochromes - fascinating molecular machines N2 - A huge number of functions and reactions can be performed by proteins merely based on their amino acids and their spatial arrangement which results in a specific geometric and electronic environment. The diversity and efficiency of functions, however, can be increased by protein-bound cofactors which fulfil their task in close interaction with the surrounding amino acid side chains. Among these cofactors, metals play an important role. They can be bound to proteins directly via specific amino acids such as cysteine and histidine, for example in zinc finger proteins or in iron sulfur cluster proteins. Another possibility is their integration into the 3D-structure of a protein via a prosthetic group. Porphyrine or porphyrine-like molecules with copper or iron as central bound metal ions constitute important structures in this respect. PY - 2011 DO - https://doi.org/10.1039/c1mt90012a SN - 1756-5901 SN - 1756-591X VL - 3 SP - 316 EP - 318 PB - RSC Publ. CY - Cambridge AN - OPUS4-23830 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - Neue Anwendungen der anorganischen Massenspektrometrie in den Lebens- und Materialwissenschaften T2 - Eingeladener Vortrag, Fakultätskolloquium, Technische Universität Bergakademie Freiberg CY - Freiberg, Germany DA - 2011-02-15 PY - 2011 AN - OPUS4-23809 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - A new Glow Discharge Time of Fligh Mass Spectrometer for Bulk Analysis and Depth Profiling T2 - PITTCON 2010, eingeladener Vortrag CY - Atlanta, GA, USA DA - 2011-03-13 PY - 2011 AN - OPUS4-23810 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Larissa A1 - Jakubowski, Norbert A1 - Hayen, H. A1 - Roos, P.H. T1 - Iodination of proteins, proteomes and antibodies with potassium triodide for LA-ICP-MS based proteomic analyses N2 - A fast and mild method for iodine labelling of proteins is presented which is specifically designed and optimized for laser ablation (LA-)ICP-MS based proteomics. Single proteins (lysozyme, bovine serum albumin, cytochrome c and β-casein), whole proteomes (microsomal proteome of rats) and antibodies (anti-bovine casein, anti-bovine serum albumin) can be efficiently iodinated by means of potassium triiodide with minimal losses of antigen properties and antibody binding to iodinated proteins. A comparison with iodination by use of IODO-Beads is presented and it is shown that triiodide labelling is a fast, cheap and less laborious alternative without compromising the analytical figures of merit. PY - 2011 DO - https://doi.org/10.1039/c1ja10090d SN - 0267-9477 SN - 1364-5544 N1 - Geburtsname von Müller, Larissa: Wäntig, L. - Birth name of Müller, Larissa: Wäntig, L. VL - 26 SP - 1610 EP - 1618 PB - Royal Society of Chemistry CY - London AN - OPUS4-24209 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Polatajko, A. A1 - Feldmann, I. A1 - Hayen, H. A1 - Jakubowski, Norbert T1 - Combined application of a laser ablation-ICP-MS assay for screening and ESI-FTICR-MS for identification of a Cd-binding protein in Spinacia oleracea L. after exposure to Cd N2 - We have studied the binding of the toxic element Cd to plant proteins and have used for this purpose spinach (Spinacia oleracea L.) plants treated with 50 µM Cd(II) as a model system. Laser ablation ICP-MS has been applied for the screening of Cd-binding proteins after separation by native anodal polyacrylamide gel electrophoresis (AN-PAGE) and electroblotting onto membranes. The main Cd-carrying protein band was isolated and investigated by nano-electrospray ionization–Fourier transform ion cyclotron resonance (FTICR) mass spectrometry after tryptic digestion. By this procedure, the main Cd-binding protein was identified as ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). The latter enzyme has been discussed in the literature to be affected in its activity by oxidative stress induced by Cd. However, in this paper it is demonstrated for the first time that RuBisCO directly binds Cd and thus may be directly altered by this toxic element. A commercially available protein standard was used to verify direct binding of Cd(II) to the protein, even without metabolisation. The resulting metal–protein complex was shown to be stable enough to survive AN-PAGE separation and electroblotting. By the use of size exclusion chromatography coupled with ICP-MS it was demonstrated that the RuBisCO protein standard shows similar metal binding properties to Cd. Furthermore, essential elements such as Mn(II), Fe(II) and Cu(II), which are known to possibly replace the RuBisCO activator Mg(II), were investigated in addition to Zn(II). Again, similar binding properties in comparison to the plant protein were observed. PY - 2011 DO - https://doi.org/10.1039/c1mt00051a SN - 1756-5901 SN - 1756-591X VL - 3 IS - 10 SP - 1001 EP - 1008 PB - RSC Publ. CY - Cambridge AN - OPUS4-24963 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - Short Course: ICP-MS with Sector Field Devices T2 - 2012 Winter Conference on Plasma Spectrochemistry CY - Tucson, AZ, USA DA - 2012-01-09 PY - 2012 AN - OPUS4-25367 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - Thermo Fisher Scientific Award in Plasma Spectrochemistry T2 - 2012 Winter Conference on Plasma Spectrochemistry CY - Tucson, AZ, USA DA - 2012-01-09 PY - 2012 AN - OPUS4-25368 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - Novel challenges for elemental analysis T2 - Bruker European Sales meeting CY - Berlin, Germany DA - 2012-04-25 PY - 2012 AN - OPUS4-25950 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Moreno-Gordaliza, E. A1 - Esteban-Fernández, D. A1 - Giesen, Charlotte A1 - Lehmann, K. A1 - Lázaro, A. A1 - Tejedor, A. A1 - Scheler, C. A1 - Canas, B. A1 - Jakubowski, Norbert A1 - Linscheid, M.W. A1 - Gómez-Gómez, M.M. T1 - LA-ICP-MS and nHPLC-ESI-LTQ-FT-MS/MS for the analysis of cisplatin-protein complexes separated by two dimensional gle elctrophoresis in biological samples N2 - A method for the analysis of Pt–protein complexes in biological samples, previously subjected to cisplatin treatment, has been developed. Proteins were separated by gel electrophoresis, and those bound to Pt were detected with high sensitivity by LA-ICP-(SF)-MS. Pt-containing spots were in-gel digested with trypsin, and the peptides produced identified using nHPLC-ESI-LTQ-FT-MS/MS. The influence of protein separation conditions, staining and gel processing prior to laser ablation on Pt–protein bonds preservation have been evaluated using standard proteins incubated with cisplatin. 2-DE separation under non-reducing conditions followed by either Coomassie blue brilliant or silver staining is appropriate for Pt–protein complexes, achieving a good separating resolution of the proteins in biological samples. Direct LA-ICP-MS analysis of glycerol-treated dried gels for Pt–protein monitoring resulted in better sensitivity, more reliable relative Pt signals and a simpler and less time-consuming approach compared to the analysis of blotted membranes. Ablation of gels allowed tackling protein identification of Pt-spots in the remaining non-ablated material in the gel, making it unnecessary to run several gels in parallel for separate Pt detection and protein identification. By using this approach, Pt coordinated to proteins, such as α-2-macroglobulin, transferrin, albumin or hemoglobin, was detected in the serum from a rat treated in vivo with cisplatin after nrSDS-PAGE separation. Furthermore, the first complete LA-ICP-MS metalloprotein contour map in a 2-DE gel has been produced, in this case for the detection of Pt–protein complexes in renal proximal tubule epithelial cells (RPTECs) incubated with cisplatin. Several proteins were identified in those spots containing Pt, which may have a connection with the drug-induced nephrotoxicity mainly affecting this cell type in the kidney. PY - 2012 DO - https://doi.org/10.1039/c2ja30016h SN - 0267-9477 SN - 1364-5544 VL - 27 IS - 9 SP - 1474 EP - 1483 PB - Royal Society of Chemistry CY - London AN - OPUS4-26562 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - Development of ICP-MS based methods for label free detection of single cells T2 - European Winter Conference on Plasma Spectrochemistry CY - Kraków, Poland DA - 2013-02-09 PY - 2013 AN - OPUS4-27891 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Richter, Janine A1 - Fettig, Ina A1 - Piechotta, Christian A1 - Philipp, Rosemarie A1 - Jakubowski, Norbert T1 - Tributylzinn in Gesamtwasserproben - Entwicklung eines Referenzverfahrens für die EU-Wasserrahmenrichtlinie PY - 2013 SN - 0016-3538 IS - 9 SP - 2 EP - 4 PB - GIT-Verlag CY - Darmstadt AN - OPUS4-29040 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - Einführung in die anorganische Massenspektroskopie T2 - 46. Jahrestagung der Deutschen Gesellschaft für Massenspektrometrie CY - Berlin, Germany DA - 2013-03-10 PY - 2013 AN - OPUS4-28032 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - Interaction of metals with biomolecules: do we have the proper tools? T2 - "Speciation Seminar" Congress Centre CY - Montpellier, France DA - 2012-05-29 PY - 2012 AN - OPUS4-27353 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - LA-ICP-MS an new tool for development of methods for imaging of biological and clinical samples T2 - Projektbesprechung Metallproteins CY - Aberdeen, Scotland DA - 2012-11-14 PY - 2012 N1 - Geburtsname von Müller, Larissa: Wäntig, L. - Birth name of Müller, Larissa: Wäntig, L. N1 - Geburtsname von Hösl, Simone: Hardt, S. - Birth name of Hösl, Simone: Hardt, S. AN - OPUS4-27354 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Larissa A1 - Techritz, Sandra A1 - Jakubowski, Norbert A1 - Roos, P.H. T1 - A multi-parametric microarray for protein profiling: simultaneous analysis of 8 different cytochromes via differentially element tagged antibodies and laser ablation ICP-MS N2 - The paper presents a new multi-parametric protein microarray embracing the multi-analyte capabilities of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The combination of high throughput reverse phase protein microarrays with element tagged antibodies and LA-ICP-MS makes it possible to detect and quantify many proteins or biomarkers in multiple samples simultaneously. A proof of concept experiment is performed for the analysis of cytochromes particularly of cytochrome P450 enzymes, which play an important role in the metabolism of xenobiotics such as toxicants and drugs. With the aid of the LA-ICP-MS based multi-parametric reverse phase protein microarray it was possible to analyse 8 cytochromes in 14 different proteomes in one run. The methodology shows excellent detection limits in the lower amol range and a very good linearity of R² ≥ 0.9996 which is a prerequisite for the development of further quantification strategies. KW - Multi-parametric KW - Multiplexing KW - Microarray KW - Immunoassay KW - LA-ICP-MS KW - Cytochrome P450 PY - 2013 DO - https://doi.org/10.1039/c3an00468f SN - 0003-2654 SN - 1364-5528 VL - 138 IS - 21 SP - 6309 EP - 6315 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-29275 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - LA-ICP-MS for the detection of (semi)metallo-proteins in biological samples after PAGE / 2-DE separations T2 - Vortrag bei Prof. Ogra, University of Pharmaceutical CY - Tokyo, Japan DA - 2013-10-01 PY - 2013 AN - OPUS4-29198 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - LA-ICP-MS for the detection of (semi)metallo-proteins in biological samples after PAGE / 2-DE separations T2 - Vortrag bei Prof. Zuruta, Chuo University CY - Tokyo, Japan DA - 2013-10-03 PY - 2013 AN - OPUS4-29201 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - Development of ICP-MS based methods for label free detection of (semi)metals T2 - Vortrag bei der Discussion Group Plasma Meeting im Institut of Technology CY - Tokyo, Japan DA - 2013-10-04 PY - 2013 AN - OPUS4-29204 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - García Fernández, J. A1 - Sánchez-González, C. A1 - Bettmer, J. A1 - Llopi, J. A1 - Jakubowski, Norbert A1 - Panne, Ulrich A1 - Montes-Bayón, M. T1 - Quantitative assessment of the metabolic products of iron oxide nanoparticles to be used as iron supplements in cell cultures N2 - Iron nanoparticles (NPs) metabolism is directly associated to human health due to their use as anemia treatment and should be studied in detail in cells. Here we present a speciation strategy for the determination of the metabolic products of iron oxide nanoparticles coated by tartaric and adipic acids in enterocytes-like cell models (Caco-2 and HT-29). Such methodology is based on the use of SDS-modified reversed phase high performance liquid chromatography (HPLC) separation using inductively coupled plasma-mass spectrometry (ICP-MS) as Fe selective detector. Post-column isotope dilution analysis is used as quantification tool by adding Fe-57 as isotopically enriched standard. To assess the separation capability of the method, two different iron nanostructures: iron sucrose nanoparticles -Venofer®- used as model suspension and iron tartrate/adipate-modified nanoparticles, both of about 4 nm (core size) were evaluated. The two nanostructures were injected into the system showing good peak profiles and quantitative elution recoveries (>80%) in both cases. In addition, both nanoparticulate fractions could be based-line separated from ionic iron species, which needed to be complexed with 1mM citrate to elute from the column. Exposed cells up to 0.5mM of iron tartrate/adipate-modified nanoparticles were specifically treated to extract the internalized NPs and the extracts examined using the proposed strategy. The obtained results revealed the presence of three different fractions corresponding to nanoparticle aggregates, dispersed nanoparticles and soluble iron respectively in a single chromatographic run. Quantitative experiments (column recoveries ranging from 60 to 80%) revealed the presence of the majority of the Fe in the nanoparticulated form (>75%) by summing up the dispersed and aggregate particles. Such experiments point out the high uptake and low solubilization rate of the tartrate/adipate NPs making these structures highly suitable as Fe supplements in oral anemia treatments. KW - Fe nanoparticles metabolism KW - Cells KW - HPLC-ICP-MS KW - Species-unspecific on-line isotope dilution PY - 2018 DO - https://doi.org/10.1016/j.aca.2018.08.003 SN - 0003-2670 VL - 1039 SP - 24 EP - 30 PB - Elsevier CY - Amsterdam AN - OPUS4-46817 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Giesen, C. A1 - Müller, Larissa A1 - Panne, Ulrich A1 - Jakubowski, Norbert T1 - History of inductively coupled plasma mass spectrometry-based immunoassays N2 - The analysis of biomolecules requires highly sensitive and selective detection methods capable of tolerating a complex, biological matrix. First applications of biomolecule detection by ICP-MS relied on the use of heteroelements as a label for quantification. However, the combination of immunoassays and ICP-MS facilitates multiparametric analyses through elemental tagging, and provides a powerful alternative to common bioanalytical methods. This approach extends the detection of biomarkers in clinical diagnosis, and has the potential to provide a deeper understanding of the investigated biological system. The results might lead to the detection of diseases at an early stage, or guide treatment plans. Immunoassays are well accepted and established for diagnostic purposes, albeit ICP-MS is scarcely applied for the detection of immune-based assays. However, the screening of biomarkers demands high throughput and multiplex/multiparametric techniques, considering the variety of analytes to be queried. Finally, quantitative information on the expression level of biomarkers is highly desirable to identify abnormalities in a given organism. Thus, it is the aim of this review to introduce the fundamentals, and to discuss the enormous strength of ICP-MS for the detection of different immunoassays on the basis of selected applications, with a special focus on LA-ICP-MS. KW - ICP-MS KW - LA-ICP-MS KW - Immunoassay KW - Elemental tagging KW - Multiplexing PY - 2012 DO - https://doi.org/10.1016/j.sab.2012.06.009 SN - 0584-8547 SN - 0038-6987 N1 - Geburtsname von Müller, Larissa: Wäntig, L. - Birth name of Müller, Larissa: Wäntig, L. VL - 76 SP - 27 EP - 39 PB - Elsevier CY - Amsterdam AN - OPUS4-27686 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Larissa A1 - Jakubowski, Norbert A1 - Hösl, Simone A1 - Scheler, C. A1 - Roos, P.H. A1 - Linscheid, M.W. T1 - Comparison of different chelates for lanthanide labeling of antibodies and application in a Western blot immunoassay combined with detection by laser ablation (LA-)ICP-MS N2 - We have developed lanthanide labeling strategies for antibodies to adapt conventional biochemical workflows like Western blot immunoassays for detection by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analysis with a special interest to apply the multi-element capabilities of ICP-MS for the design of multiplexed immunoassays. In this paper the lanthanide labeling of antibodies with MeCAT was investigated and the reaction conditions were optimized for application in a Western blot immunoassay analyzed by LA-ICP-MS. Furthermore, the MeCAT labeling strategy was compared with two other commercially available labeling reagents, MAXPAR™ and SCN-DOTA. As a proof-of-principle experiment chemically induced alterations of cytochrome P450 protein expression were investigated and the suitability of the differentially labeled antibodies for Western blot immunoassays of a complex liver microsomal protein fraction was tested. Limits of detection (LODs) in the lower fmol range were reached in the Western blot application using MeCAT and MAXPAR™ as element labeling reagents, whereas even sub-fmol LODs can be achieved in a dot blot experiment for the pure antibodies. PY - 2012 DO - https://doi.org/10.1039/c2ja30068k SN - 0267-9477 SN - 1364-5544 N1 - Geburtsname von Müller, Larissa: Wäntig, L. - Birth name of Müller, Larissa: Wäntig, L. N1 - Geburtsname von Hösl, Simone: Hardt, S. - Birth name of Hösl, Simone: Hardt, S. VL - 27 IS - 8 SP - 1311 EP - 1320 PB - Royal Society of Chemistry CY - London AN - OPUS4-26256 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Löhr, Konrad A1 - Traub, Heike A1 - Wanka, Antje Jutta A1 - Panne, Ulrich A1 - Jakubowski, Norbert T1 - Quantification of metals in single cells by LA-ICP-MS: Comparison of single spot analysis and imaging N2 - LA-ICP-MS is increasingly used for single cell analysis in two different detection modes using either the imaging mode with subcellular resolution or alternatively single spot analysis of cells with a larger laser spot size. This study compares the analytical figures of merit of both detection modes (signal to noise, precision, accuracy, throughput), as well as ease of operation and data evaluation. Adherent 3T3 fibroblast cells were stained with two metal dyes (mDOTA-Ho, Ir-DNA-intercalator) and several dozen cells were measured using both modes. We found a ten times higher throughput for single spot analysis, which has as well a straightforward data analysis, shortening the total analysis time further. The signal to noise ratio for single spot analysis was found to be slightly better compared to the signal to noise of pixels in imaging. The mean metal intensity per single cell differed by only 10% between both modes and obtained distributions were found to show no statistically significant differences. Using matrix matched calibration based on standards spotted onto nitrocellulose membrane, we achieved detection limits (10s) of 12 fg for Ir and 30 fg for Ho and quantified 57 +/-35 fg Ir and 1192 +/- 707 fg Ho per single cell. Compared to a conventional ICP-MS measurement of a digest of about 60000 cells, 54% of Ir content and 358% Ho content was found using quantitative LA-ICP-MS. The difference might be a consequence of the two metal dyes binding to different structures of the cell and therefore might behave differently in sample preparation for conventional and LA-ICP-MS. KW - Cells KW - Laser ablation KW - ICP-MS KW - Metals KW - Quantification PY - 2018 DO - https://doi.org/10.1039/c8ja00191j SN - 0267-9477 VL - 33 IS - 9 SP - 1579 EP - 1587 PB - RSC Royal Society of Chemistry CY - London AN - OPUS4-46441 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Loehr, Konrad A1 - Jakubowski, Norbert A1 - Wanka, Antje Jutta A1 - Traub, Heike A1 - Panne, Ulrich T1 - Quantification of metals in single cells by LA-ICP-MS comparison of single spot analysis and imaging N2 - LA-ICP-MS is increasingly used for single cell analysis in two different detection modes using either the imaging mode with subcellular resolution or alternatively single spot analysis of cells with a larger laser spot size. This study compares the analytical figures of merit of both detection modes (signal to noise, precision, accuracy, throughput), as well as ease of operation and data evaluation. Adherent 3T3 fibroblast cells were stained with two metal dyes (mDOTA-Ho, Ir-DNA-intercalator) and several dozen cells were measured using both modes. We found a ten times higher throughput for single spot analysis, which has as well a straightforward data analysis, shortening the total analysis time further. The signal to noise ratio for single spot analysis was found to be slightly better compared to the signal to noise of pixels in imaging. The mean metal intensity per single cell differed by only 10% between both modes and obtained distributions were found to show no statistically significant differences. Using matrix matched calibration based on standards spotted onto nitrocellulose membrane, we achieved detection limits (10 σ) of 12 fg for Ir and 30 fg for Ho and quantified 57 ± 35 fg Ir and 1,192 ± 707 fg Ho per single cell. Compared to a conventional ICP-MS measurement of a digest of ~60,000 cells, 54 % of Ir content and 358 % Ho content was found using quantitative LA-ICP-MS. The difference might be a consequence of the two metal dyes binding to different structures of the cell and therefore might behave differently in sample preparation for conventional and LA-ICP-MS. KW - Single cell analysis KW - LA-ICP-MS PY - 2018 DO - https://doi.org/10.1039/c8ja00191j SN - 0267-9477 SN - 1364-5544 VL - 33 IS - 9 SP - 1579 EP - 1587 PB - Royal Society of Chemistry AN - OPUS4-45903 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kirilina, E. A1 - Helbling, S. A1 - Morawski, M. A1 - Pine, K. A1 - Reimann, K. A1 - Jankuhn, S. A1 - Dinse, J. A1 - Deistung, A. A1 - Reichenbach, J. R. A1 - Trampel, R. A1 - Geyer, S. A1 - Müller, Larissa A1 - Jakubowski, Norbert A1 - Arendt, T. A1 - Bazin, P.-L. A1 - Weiskopf, N. T1 - Superficial white matter imaging: Contrast mechanisms and whole-brain in vivo mapping N2 - Superficial white matter (SWM) contains the most cortico-cortical white matter connections in the human brain encompassing the short U-shaped association fibers. Despite its importance for brain connectivity, very little is known about SWM in humans, mainly due to the lack of noninvasive imaging methods. Here, we lay the groundwork for systematic in vivo SWM mapping using ultrahigh resolution 7 T magnetic resonance imaging. Using biophysical modeling informed by quantitative ion beam microscopy on postmortem brain tissue, we demonstrate that MR contrast in SWM is driven by iron and can be linked to the microscopic iron distribution. Higher SWM iron concentrations were observed in U-fiber–rich frontal, temporal, and parietal areas, potentially reflecting high fiber density or late myelination in these areas. Our SWM mapping approach provides the foundation for systematic studies of interindividual differences, plasticity, and pathologies of this crucial structure for cortico-cortical connectivity in humans. KW - Magnetic resonance imaging KW - Laser ablation KW - ICP-MS KW - Brain KW - Imaging PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-514430 DO - https://doi.org/10.1126/sciadv.aaz9281 SN - 2375-2548 VL - 6 IS - 41 SP - eaaz9281 PB - American Association for the Advancement of Science (Science/AAAS) CY - Washington, DC, USA AN - OPUS4-51443 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cruz-Alonso, M. A1 - Fernandez, B. A1 - Álvarez, L. A1 - González-Iglesias, H. A1 - Traub, Heike A1 - Jakubowski, Norbert A1 - Pereiro, R. T1 - Bioimaging of metallothioneins in ocular tissue sections by laser ablation-ICP-MS using bioconjugated gold nanoclusters as specific tags N2 - An immunohistochemical method is described to visualize the distribution of metallothioneins 1/2 (MT 1/2) and metallothionein 3 (MT 3) in human ocular tissue. It is making use of (a) antibodies conjugated to gold nanoclusters (AuNCs) acting as labels, and (b) laser ablation (LA) coupled to inductively coupled plasma – mass spectrometry (ICP-MS).Water-soluble fluorescent AuNCs (with an average size of 2.7 nm) were synthesized and then conjugated to antibody by carbodiimide coupling. The surface of the modified AuNCs was then blocked with hydroxylamine to avoid nonspecific interactions with biological tissue. Immunoassays for MT 1/2 and MT 3 in ocular tissue sections (5 μm thick) from two post mortem human donors were performed. Imaging studies were then performed by fluorescence using confocal microscopy, and LA-ICP-MS was performed in the retina to measure the signal for gold. Signal amplification by the >500 gold atoms in each nanocluster allowed the antigens (MT 1/2 and MT 3) to be imaged by LA-ICP-MS using a laser spot size as small as 4 μm. The image patterns found in retina are in good agreement with those obtained by conventional fluorescence immunohistochemistry which was used as an established reference method. KW - Metal nanoclusters KW - Fluorescence KW - Protein imaging KW - Thin tissue sections KW - Immunohistochemistry KW - Bioconjugation KW - Carbodiimide crosslinking KW - Laser ablation KW - Mass spectrometry PY - 2018 DO - https://doi.org/10.1007/s00604-017-2597-1 VL - 185 IS - 1 SP - 1 EP - 9 PB - Springer AN - OPUS4-44022 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cruz-Alonso, M. A1 - Fernandez, B. A1 - Alvarez, L. A1 - Gonzalez-Iglesias, H. A1 - Traub, Heike A1 - Jakubowski, Norbert A1 - Pereiro, R. T1 - Bioimaging of metallothioneins in ocular tissue sections by laser ablation-ICP-MS using bioconjugated gold nanoclusters as specific tags N2 - An immunohistochemical method is described to visualize the distribution of metallothioneins 1/2 (MT 1/2) and metallothionein 3 (MT 3) in human ocular tissue. It is making use of (a) antibodies conjugated to gold nanoclusters (AuNCs) acting as labels, and (b) laser ablation (LA) coupled to inductively coupled plasma – mass spectrometry (ICP-MS). Water-soluble fluorescent AuNCs (with an average size of 2.7 nm) were synthesized and then conjugated to antibody by carbodiimide coupling. The surface of the modified AuNCs was then blocked with hydroxylamine to avoid nonspecific interactions with biological tissue. Immunoassays for MT 1/2 and MT 3 in ocular tissue sections (5 μm thick) from two post mortem human donors were performed. Imaging studies were then performed by fluorescence using confocal microscopy, and LA-ICP-MS was performed in the retina to measure the signal for gold. Signal amplification by the >500 gold atoms in each nanocluster allowed the antigens (MT 1/2 and MT 3) to be imaged by LA-ICP-MS using a laser spot size as small as 4 μm. The image patterns found in retina are in good agreement with those obtained by conventional fluorescence immunohistochemistry which was used as an established reference method. KW - Nanocluster KW - Immunohistochemistry KW - Laser ablation KW - ICP-MS KW - Fluorescence KW - Bioimaging PY - 2018 DO - https://doi.org/10.1007/s00604-017-2597-1 SN - 1436-5073 SN - 0026-3672 VL - 185 IS - 1 SP - 64 EP - 72 PB - Springer CY - Vienna AN - OPUS4-44637 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Shigeta, K. A1 - Koellensperger, G. A1 - Rampler, E. A1 - Traub, Heike A1 - Rottmann, L. A1 - Panne, Ulrich A1 - Okino, A. A1 - Jakubowski, Norbert T1 - Sample introduction of single selenized yeast cells (Saccharomyces cerevisiae) by micro droplet generation into an ICP-sector field mass spectrometer for label-free detection of trace elements N2 - We have applied a micro droplet generator (µDG) for sample introduction of single selenized yeast cells into a sector field ICP-MS, which was operated in a fast scanning mode with sampling rates of up to 10 kHz, to measure single cells time resolved with 100 µs integration time. Selenized yeast cells have been used as a model system for preliminary investigation. The single cells to be measured have been embedded into droplets and it will be shown that the time duration of a single cell event always is about 400 to 500 µs, and thus comparable to the time duration of a droplet without a cell. A fixed droplet generation rate of 50 Hz produced equidistant signals in time of each droplet event and was advantageous to separate contribution from background and blank from the analytical signal. Open vessel digestion and a multielement analysis were performed with washed yeast cells and absolute amounts per single cell were determined for Na (0.91 fg), Mg (9.4 fg), Fe (5.9 fg), Cu (0.54 fg), Zn (1.2 fg) and Se (72 fg). Signal intensities from single cells have been measured for the elements Cu, Zn and Se, and histograms were calculated for about 1000 cell events. The mean elemental sensitivities measured here range from 0.7 counts per ag (Se) to 10 counts per ag (Zn) with RSD's from 49% (Zn) to 69% (Se) for about 1000 cell events. PY - 2013 DO - https://doi.org/10.1039/c3ja30370e SN - 0267-9477 SN - 1364-5544 VL - 28 IS - 5 SP - 637 EP - 645 PB - Royal Society of Chemistry CY - London AN - OPUS4-29448 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Garcia-Fernandez, J. A1 - Turiel, D. A1 - Bettmer, J. A1 - Jakubowski, Norbert A1 - Panne, Ulrich A1 - Rivas Garcia, L. A1 - Llopis, J. A1 - Sanchez-Gonzalez, C. A1 - Montes-Bayon, M. T1 - In vitro and in situ experiments to evaluate the biodistribution and cellular toxicity of ultrasmall iron oxide nanoparticles potentially used as oral iron supplements N2 - Well-absorbed iron-based nanoparticulated materials are a promise for the oral management of iron deficient anemia. In this work, a battery of in vitro and in situ experiments are combined for the evaluation of the uptake, distribution and toxicity of new synthesized ultrasmall (4 nm core) Fe2O3 nanoparticles coated with tartaric/adipic acid with potential to be used as oral Fe supplements. First, the in vitro simulated gastric acid solubility studies by TEM and HPLC-ICP-MS reveal a partial reduction of the core size of about 40% after 90 min at pH3. Such scenario confirms the arrival of the nanoparticulate material in the small intestine. In the next step, the in vivo absorption through the small intestine by intestinal perfusion experiments is conducted using the sought nanoparticles in Wistar rats. The quantification of Fe in the NPs Suspension before and after perfusion shows Fe absorption levels above 79%, never reported for other Fe treatments. Such high absorption levels do not seem to compromise cell viability, evaluated in enterocytes-like models (Caco-2 and HT-29) using cytotoxicity, ROS production, genotoxicity and lipid peroxidation tests. Moreover, regional differences in terms of Fe concentration are obtained among different parts of the small intestine as duodenum>jejunum>ileum. Complementary transmission electron microscopy (TEM) images show the presence of the intact particles around the intestinal microvilli without significant tissue damage. These studies show the high potential of these NP preparations for their use as oral management of anemia. KW - Iron nanoparticles KW - Anemia KW - ICP-MS KW - In vitro KW - In situ PY - 2020 DO - https://doi.org/10.1080/17435390.2019.1710613 VL - 14 IS - 3 SP - 388 EP - 403 PB - Taylor & Francis Online CY - London AN - OPUS4-50314 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chinthalapati, Siva Kesava Raju A1 - Lück, Detlef A1 - Scharf, Holger A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - A novel solid phase extraction method for pre-concentration of gadolinium and gadolinium based MRI contrast agents from the environment N2 - An efficient solid phase extraction (SPE) method using bis-(2-ethylhexyl)-phosphate (HDEHP) coated reverse phase C18 support has been developed for the pre-concentration of Gadolinium (Gd) and Gd contrast agents widely used in magnetic resonance imaging (MRI). Enrichment of Gd in the ionic form has been compared with strong cation exchange material Chromabond SA (SCX), weak ion exchange material Chelex-100 and also with lanthanide specific HDEHP modified reverse phase C18. The determination of Gd and its complexes after enrichment were performed using inductively coupled plasma mass spectrometry (ICP-MS) and on the basis of 158Gd. Among the three SPE materials, HDEHP coated reverse phase C18 SPE has been found to be most efficient, yielding a hundredfold Gd enrichment with > 95% recovery for linear and cyclic contrast agents like Gd-DTPA (Magnevist), Gd-DOTA (Dotarem), Gd-BOPTA (Multihance), and Gd-BT-DO3A (Gadovist). The developed SPE method has been successfully applied to the surface water and waste water samples originated from different places in Berlin, Germany. The results were in good agreement with the results obtained with direct measurement with ICP-MS. The developed pre-concentration method can be efficiently used for the determination of trace levels of gadolinium in the environment even with less sensitive analytical techniques. KW - Solid phase extraction KW - Magnetic resonance imaging KW - Gadolinium KW - Gd based contrast agents KW - Chelex-100 KW - HDEHP KW - Speciation PY - 2010 DO - https://doi.org/10.1039/c003251d SN - 0267-9477 SN - 1364-5544 VL - 25 IS - 10 SP - 1573 EP - 1580 PB - Royal Society of Chemistry CY - London AN - OPUS4-21985 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Herrmann, Antje Jutta A1 - Techritz, Sandra A1 - Jakubowski, Norbert A1 - Haase, A. A1 - Luch, A. A1 - Panne, Ulrich A1 - Müller, Larissa T1 - A simple metal staining procedure for identification and visualization of single cells by LA-ICP-MS N2 - High lateral resolution of metal detection in single cells by use of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) demands powerful staining methods. In this work different staining procedures for the single cell analysis with LA-ICP-MS were optimized. An iridium intercalator was utilized to stain the cell nuclei whereas the whole cell was stained by the use of maleimido-mono-amide-DOTA (mDOTA) complexing lanthanide(III) ions. The content of the artificially introduced metals per cell was quantified using a matrix matched calibration approach based on cellulose membranes onto which standards were spotted by a microarray spotter. Absolute metal stain amounts in the range of 2.34 to 9.81 femtomole per cell were determined. The metal staining procedures allow direct identification and visualization of single cells and their cell compartments by element microscopy without the use of bright field images of the sample. KW - Single Cell Analysis KW - Bioimaging KW - LA-ICP-MS based immunoassays PY - 2017 DO - https://doi.org/10.1039/c6an02638a SN - 0003-2654 SN - 1364-5528 VL - 142 IS - 10 SP - 1703 EP - 1710 PB - The Royal Society of Chemistry AN - OPUS4-40251 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - The quantitative elemental microscope: for what is it good for? N2 - Elemental imaging of biological samples using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) provides spatially resolved information on element distribution in thin sections. By rastering with a laser across the sample, a two-dimensional image of the elemental distribution can be reconstructed that shows the intensities of the respective elements. Using overlapping laser shots the area ablated from single cells or thin sections (thickness 5 to 10 µm) can be reduced significantly so that the pixel size of the intensity measurement is significantly reduced. Having in mind that a laser shot ablates thin biological samples completely, we can make use of a new concept for calibration in the laser ablation method: the concept of total consumption. This calibration strategy allows production of simple matrix matched standards and provides an internal standardisation by ink jet technology, where a metal containing inks is printed on as thin layer on top of a biological sample. Different applications will be presented where our concepts have been applied. In the first example we used nanoparticle suspension of given particle numbers to quantify the uptake of metallic nanoparticles by biological cells. In the second example antibodies have been tagged by metals to measure protein expression in prostata cancer. In this approach application of house keeping proteins are investigated additionally to compensate variations in thickness and density of the biopsy samples. In the third application different nephrotoxic behaviour of Pt containing drugs have been investigated to study the local enrichement in kidney samples of mice treated with these three different compounds. Here the internal standard is required to allow intercomparisons between different individual mouse tissues. At the end of the lecture future trends will be discussed for elemental microscopy. T2 - European Winter Conference on Plasma Spectrochemistry 2017 CY - Sankt Anton am Arlberg, Austria DA - 19.02.2017 KW - LA-ICP-MS KW - Bioimaging KW - Nanoparticles KW - Biomarker PY - 2017 AN - OPUS4-39267 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - Method development for metal detection at cellular levels by ICP-MS N2 - An overview about different analytical approaches will be presented of how to detect metals in individual biological cells by use of ICP-MS. For this purpose, we are using different sample introduction systems for ICP-MS for detection, imaging and quantification of metals at cellular levels. By use of laser ablation, we have studied the up-take by and distribution of nanoparticles in single cells. Recently we have developed staining techniques to measure protein and DNA content of cells and identifying the cell status by immunoassays using metal-tagging of antibodies. New research based on cell arrays will be shortly discussed. Using pneumatic nebulization and microdroplet generation, we have also studied the up-take of nanoparticles and toxic metals as well as essential elements in single cells using different ICP-MS mass spectrometric concepts (sector field instrument, triple-quad instrument, time of flight (CyTOF) instrument). The different ICP-MS based methods will be compared concerning their analytical figures of merit and their strengths and weaknesses will be evaluated. T2 - ACS Annual Meeting CY - New Orleans, LA, USA DA - 18.03.2018 KW - Single cell ICP-MS KW - LA-ICP-MS with cellular resolution KW - Nanoparticles PY - 2018 AN - OPUS4-44799 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Larissa A1 - Herrmann, Antje Jutta A1 - Techritz, Sandra A1 - Panne, Ulrich A1 - Jakubowski, Norbert T1 - Quantitative characterization of single cells by use of immunocytochemistry combined with multiplex LA-ICP-MS N2 - Actual research demonstrates that LA-ICP-MS is capable of being used as an imaging tool with cellular resolution. The aim of this investigation was the method development for LA-ICP-MS to extend the versatility to quantitative and multiplexing imaging of single eukaryotic cells. For visualization of individual cells selected, lanthanide-labeled antibodies were optimized for immuno-imaging of single cells with LA-ICP-MS. The molar content of the artificial introduced labels per cell was quantified using self-made nitrocellulose-coated slides for matrix-matched calibration and calculated amounts were in the range of 3.1 to 17.8 atmol per cell. Furthermore, the quantification strategy allows a conversion of 2D intensity profiles based on counts per second (cps) to quantitative 2D profiles representing the molar amount of the artificial introduced elemental probes per pixel for each individual cell. KW - Single cell analysis KW - Bioimaging by LA-ICP-MS KW - Immunoassays PY - 2017 DO - https://doi.org/10.1007/s00216-017-0310-1 SN - 1618-2642 SN - 1618-2650 VL - 409 IS - 14 SP - 3667 EP - 3676 PB - Springer AN - OPUS4-40068 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abad Andrade, Carlos Enrique A1 - Florek, S. A1 - Becker-Ross, H. A1 - Huang, M.-D. A1 - Heinrich, Hans-Joachim A1 - Recknagel, Sebastian A1 - Vogl, Jochen A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Determination of boron isotope ratios by high-resolution continuum source molecular absorption spectrometry using graphite furnace vaporizers N2 - Boron isotope amount ratios n(10B)/n(11B) have been determined by monitoring the absorption spectrum of boron monohydride (BH) in a graphite furnace using high-resolution continuum source molecular absorption spectrometry (HR-CS-MAS). Bands (0→0) and (1→1) for the electronic transition X1Σ+ → A1Π were evaluated around wavelengths 433.1 nm and 437.1 nm respectively. Clean and free of memory effect molecular spectra of BH were recorded. In order to eliminate the memory effect of boron, a combination of 2% (v/v) hydrogen gas in argon and 1% trifluoromethane in argon, an acid solution of calcium chloride and mannitol as chemical modifiers was used. Partial least square regression (PLS) for analysis of samples and reference materials were applied. For this, a spectral library with different isotopes ratios for PLS regression was built. Results obtained around the 433.1 nm and 437.1 nm spectral regions are metrologically compatible with those reported by mass spectrometric methods. Moreover, for the evaluated region of 437 nm, an accuracy of 0.15‰ is obtained as the average deviation from the isotope reference materials. Expanded uncertainties with a coverage factor of k = 2 range between 0.15 and 0.44‰. This accuracy and precision are compatible with those obtained by mass spectrometry for boron isotope ratio measurements. KW - Boron isotopes KW - Isotope ratios KW - Boron monohydride KW - Molecular absorption KW - High-resolution continuum source absorption spectrometry KW - Graphite furnace KW - Memory effect KW - HR-CS-MAS PY - 2017 UR - http://www.sciencedirect.com/science/article/pii/S0584854717302537 DO - https://doi.org/10.1016/j.sab.2017.08.012 SN - 0584-8547 VL - 136 SP - 116 EP - 122 PB - Elsevier CY - Amsterdam, The Netherlands AN - OPUS4-42071 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hachenberger, Y. U. A1 - Rosenkranz, D. A1 - Kriegel, Fabian L. A1 - Krause, B. A1 - Matschaß, René A1 - Reichardt, P. A1 - Tentschert, J. A1 - Laux, P. A1 - Jakubowski, Norbert A1 - Panne, Ulrich A1 - Luch, A. T1 - Tackling Complex Analytical Tasks: An ISO/TS-Based Validation Approach for Hydrodynamic Chromatography Single Particle Inductively Coupled Plasma Mass Spectrometry N2 - Nano-carrier systems such as liposomes have promising biomedical applications. Nevertheless, characterization of these complex samples is a challenging analytical task. In this study a coupled hydrodynamic chromatography-single particle-inductively coupled plasma mass spectrometry (HDC-spICP-MS) approach was validated based on the technical specification (TS) 19590:2017 of the international organization for standardization (ISO). The TS has been adapted to the hyphenated setup. The quality criteria (QC), e.g., linearity of the calibration, transport efficiency, were investigated. Furthermore, a cross calibration of the particle size was performed with values from dynamic light scattering (DLS) and transmission electron microscopy (TEM). Due to an additional Y-piece, an online-calibration routine was implemented. This approach allows the calibration of the ICP-MS during the dead time of the chromatography run, to reduce the required time and enhance the robustness of the results. The optimized method was tested with different gold nanoparticle (Au-NP) mixtures to investigate the characterization properties of HDC separations for samples with increasing complexity. Additionally, the technique was successfully applied to simultaneously determine both the hydrodynamic radius and the Au-NP content in liposomes. With the established hyphenated setup, it was possible to distinguish between different subpopulations with various NP loads and different hydrodynamic diameters inside the liposome carriers. KW - Single particle ICP-MS KW - Nanoparticle characterization KW - Nano-carrier KW - Iposomes KW - Hydrodynamic chromatography (HDC) KW - Validation PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506609 DO - https://doi.org/10.3390/ma13061447 VL - 13 IS - 6 SP - 1 EP - 14 CY - Basel, Switzerland AN - OPUS4-50660 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rosenkranz, Daniel A1 - Kriegel, F. L. A1 - Mavrakis, E. A1 - Pergantis, S. A. A1 - Reichardt, Ph. A1 - Tentschert, J. A1 - Jakubowski, Norbert A1 - Laux, P. A1 - Panne, Ulrich T1 - Improved validation for single particle ICP-MS analysis using a pneumatic nebulizer / microdroplet generator sample introduction system for multi-mode nanoparticle determination N2 - This study reports on the development of a single-particle (sp) inductively coupled plasma mass spectrometry (ICP-MS) technique suitable for the multi-mode determination of nanoparticle (NP) metal mass fraction and number concentration. The described technique, which is based on a dual inlet System consisting of a pneumatic nebulizer (PN) and a microdroplet generator (MDG), allows for the sequential introduction of ionic metal calibrant solutions and nanoparticle suspensions via all combinations of the two inlets; thus allowing for a combination of three independent modes of analysis. A novel interface, assembled using standard analytical components (a demountable quartz ICP-MS torch, flexible nonconducting silicon tubing and various connectors), was used to interface the dual inlet system to an ICP-MS. The interface provided improved functionality, compared to a previous design. It is now possible to conveniently exchange and introduce standard solutions and samples via all inlet combinations, analyze them, and also wash the sample inlet systems while the whole setup is still connected to an operating ICP-MS. This setup provided seamless and robust operation in a total of three analysis modes, i.e. three ways to independently determine the metal mass fraction and NP number concentration. All three analyses modes could be carried out within a single analytical run lasting approximately 20 min. The unique feature of the described approach is that each analysis mode is based on a different. KW - Nanomaterials KW - Nanoparticles KW - Single particle ICP-MS KW - Microdroplet generator PY - 2020 DO - https://doi.org/10.1016/j.aca.2019.11.043 VL - 1099 SP - 16 EP - 25 PB - Elsevier B.V. AN - OPUS4-50361 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - Development of ICP-MS based methods to study the uptake of nanoparticles by single cells T2 - 2nd QNano Integrating Conference CY - Prague, Czech Republic DA - 2013-02-27 PY - 2013 AN - OPUS4-27862 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lindner, Uwe A1 - Lingott, Jana A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Der Nachweis von Gadolinium - Kontrastmittel in Oberflächengewässern und Pflanzen N2 - Seit Jahren wird eine erhöhte Konzentration des Gadoliniums in der Umwelt beobachtet und dies kann auf seine Anwendung in der Medizin zurückgeführt werden, denn Gadolinium wird seit rund 25 Jahren u. a. in Krankenhäusern als Kontrastmittel für das Magnetresonanzimaging (MRI) angewendet. PY - 2013 SN - 0016-3538 VL - 7 SP - 434 EP - 436 PB - GIT-Verlag CY - Darmstadt AN - OPUS4-28850 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - Future challenges for ICP-MS T2 - Symposium - 100 Jahre Massenspektrometrie CY - Vienna, Austria DA - 2013-11-26 PY - 2013 AN - OPUS4-29693 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - Development of ICP-MS based methods for label free detection of single cells T2 - Winter Conference on Plasma Spectrochemistry 2014 CY - Amelia Island, FL, USA DA - 2014-01-05 PY - 2014 AN - OPUS4-30248 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Phukphatthanachai, Pranee A1 - Panne, Ulrich A1 - Jakubowski, Norbert A1 - Vogl, Jochen T1 - SI-traceable quantification of sulphur in copper metal and its alloys by ICP-IDMS N2 - Previously applied methods for the quantification of sulphur in copper and other pure metals revealed a lack of SI-traceability and additionally showed inconsistent results, when different methods were compared. Therefore, a reference procedure is required which allows SI-traceable values accompanied by a Sound uncertainty budget. In this study a procedure was developed for the quantification of total sulphur in copper at low concentration levels using inductively coupled plasma-isotope dilution mass spectrometry (ICP-IDMS). The major part of the copper matrix was separated by adding ammonia which forms a complex with the copper while releasing the sulphur followed by chromatographic separation using a weak cation resin. After that the sulphur fraction was further purified by chromatographic means using first an anion exchange method and second a chelating resin. The developed procedure shows high performance, especially concerning high efficiency in matrix removal (>99.999%) while keeping the recovery of sulphur above 80%. Procedure blanks are in the order of 3–53 ng resulting in LOD and LOQ values of 0.2 mg g1 and 0.54 mg g1, respectively. The procedure is sufficient to facilitate value assignment of the total sulphur mass fraction in reference materials. Additionally, relative measurement uncertainties were calculated to be below 1% and the measurement results were traceable to the SI. The procedure reported in this study is a new reference procedure for sulphur measurement in copper, being fit for two major purposes, certification of reference materials and assignment of reference values for inter-laboratory comparison. KW - Traceability KW - Measuremment uncertainty KW - Isotope dilution mass spectrometry KW - Reference measurements PY - 2018 DO - https://doi.org/10.1039/c7ja00338b SN - 0267-9477 SN - 1364-5544 VL - 33 IS - 1 SP - 90 EP - 101 PB - Royal Society of Chemistry CY - Cambridge, UK AN - OPUS4-43614 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - García-Fernández, J. A1 - Bettmer, J. A1 - Jakubowski, Norbert A1 - Panne, Ulrich A1 - Añón, E. A1 - Montes-Bayón, M. A1 - Sanz-Medel, A. T1 - The fate of iron nanoparticles used for treatment of iron deficiency in blood using mass-spectrometry based strategies N2 - The release of iron from iron nanoparticles (NPs) used as parenteral formulations appears to be influenced by the size and surface properties of the colloidal iron complex and the matrix. A clinically applied product Venofer® has been used as a model formulation to establish adequate analytical strategies to evaluate the fate of iron nanoparticles (NPs) in blood. First, the preparation was characterized by high resolution transmission electron microscopy (HRTEM), dynamic light scattering (DLS) and UV-vis absorption spectroscopy. This revealed the presence of monodisperse iron NPs with a hydrodynamic diameter of ∼15 nm and an iron core of ∼4 nm. Venofer® was then incubated with serum and whole blood in a quantitative study on the iron bioavailability from these NPs. Iron was speciated and quantified by using inductively coupled plasma mass spectrometry (ICP-MS). Iron solubilization levels of up to 42% were found in both fluids using isotope dilution of iron for quantification within the first hour of incubation even in the absence of the reticuloendothelial system. The monitoring of the iron-containing proteins present in serum was conducted by highperformance liquid chromatography with ICP-MS detection. It indicated that the dissolved iron ions are bound to transferrin. Quantitative speciation studies using isotope pattern deconvolution experiments concluded that the released iron saturated almost completely (up to 90%) the metal binding sites of transferrin. The remaining iron appeared also associated to albumin and, to a lesser extent, forming smaller sized particles. Thus, the methods presented here provide new insights into the fate of Venofer® nanoparticles and may be applied to other formulations. KW - Iron-sucrose nanoparticles KW - Serum KW - Bioavailability KW - Speciation KW - HPLC KW - ICP-MS PY - 2017 DO - https://doi.org/10.1007/s00604-017-2388-8 SN - 0026-3672 SN - 1436-5073 VL - 184 IS - 10 SP - 3673 EP - 3680 AN - OPUS4-43128 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Jakubowski, Norbert A1 - Müller, L. A1 - Traub, Heike A1 - Esteban-Fernández, D. A1 - Panne, Ulrich A1 - Herrmann, Antje A1 - Schellenberger, E. A1 - Theuring, F. A1 - Kneipp, Janina T1 - Imaging by laser ablation ICP-MS N2 - ICP-MS is a well-established analytical method which excels by high accuracy, high dynamic range and extremely low limits of detection for most metals. Furthermore ICP-MS offers a very high multi-element coverage so that many elements of the periodic table can be detected simultaneously. In this series of lectures, we want to focus on the historical developments, fundamentals, instrumentation and novel applications of ICP-MS in the life and material sciences. T2 - Ringvorlesung Analytik CY - Humboldt-Universität zu Berlin DA - 23.06.2017 KW - Laser ablation ICP-MS KW - Bio-Imaging PY - 2017 AN - OPUS4-40757 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - The Role of Modern Plasma-based Spectroscopies in the Material Sciences T2 - 2012 Winter Conference on Plasma Spectrochemistry CY - Tucson, AZ, USA DA - 2012-01-09 PY - 2012 N1 - Geburtsname von Müller, Larissa: Wäntig, L. - Birth name of Müller, Larissa: Wäntig, L. N1 - Geburtsname von Sugiyama, Kaori: Shigeta, K. - Birth name of Sugiyama, Kaori: Shigeta, K. AN - OPUS4-25366 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - How to detect metal protein adducts and single nanoparticles by ICP-MS T2 - Invited Lecture Tour in Tokyo CY - Tsukuba, Japan DA - 2013-10-02 PY - 2013 AN - OPUS4-29200 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - Future challenges for ICP-MS T2 - Invited Lecture Tour in Tokyo, Vortrag bei der Firma Agilent CY - Tokyo, Japan DA - 2013-10-01 PY - 2013 AN - OPUS4-29199 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - Bio-Imaging mittels laser-ablation-ICP-MS T2 - Ringvorlesung Analytik CY - Berlin, Germany DA - 2014-05-23 PY - 2014 AN - OPUS4-31097 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Drescher, Daniela A1 - Zeise, Ingrid A1 - Traub, Heike A1 - Guttmann, P. A1 - Seifert, Stephan A1 - Büchner, Tina A1 - Jakubowski, Norbert A1 - Schneider, G. A1 - Kneipp, Janina T1 - In situ characterization of SiO2 nanoparticle biointeractions using BrightSilica N2 - By adding a gold core to silica nanoparticles (BrightSilica), silica-like nanoparticles are generated that, unlike unmodified silica nanoparticles, provide three types of complementary information to investigate the silica nano-biointeraction inside eukaryotic cells in situ. Firstly, organic molecules in proximity of and penetrating into the silica shell in live cells are monitored by surface-enhanced Raman scattering (SERS). The SERS data show interaction of the hybrid silica particles with tyrosine, cysteine and phenylalanine side chains of adsorbed proteins. Composition of the biomolecular corona of BrightSilica nanoparticles differs in fibroblast and macrophage cells. Secondly, quantification of the BrightSilica nanoparticles using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) micromapping indicates a different interaction of silica nanoparticles compared to gold nanoparticles under the same experimental conditions. Thirdly, the metal cores allow the investigation of particle distribution and interaction in the cellular ultrastructure by cryo nanoscale X-ray tomography (cryo-XT). In 3D reconstructions the assumption is confirmed that BrightSilica nanoparticles enter cells by an endocytotic mechanism. The high SERS intensities are explained by the beneficial plasmonic properties due to agglomeration of BrightSilica. The results have implications for the development of multi-modal qualitative and quantitative characterization in comparative nanotoxicology and bionanotechnology. KW - Silica nanoparticles KW - Surface-enhanced Raman scattering KW - X-ray tomography KW - LA-ICP-MS KW - Core–shell structures PY - 2014 DO - https://doi.org/10.1002/adfm.201304126 SN - 1616-301X SN - 1616-3028 VL - 24 IS - 24 SP - 3765 EP - 3775 PB - Wiley-VCH CY - Weinheim AN - OPUS4-30924 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, L. A1 - Traub, Heike A1 - Jakubowski, Norbert T1 - Novel applications of lanthanoides as analytical or diagnostic tools in the life sciences by ICP-MS-based techniques N2 - Inductively coupled plasma mass spectrometry (ICP-MS) is a well-established analytical method for multi-elemental analysis in particular for elements at trace and ultra-trace levels. It has found acceptance in various application areas during the last decade. ICP-MS is also more and more applied for detection in the life sciences. For these applications, ICP-MS excels by a high sensitivity, which is independent of the molecular structure of the analyte, a wide linear dynamic range and by excellent multi-element capabilities. Furthermore, methods based on ICP-MS offer simple quantification concepts, for which usually (liquid) standards are applied, low matrix effects compared to other conventional bioanalytical techniques, and relative limits of detection (LODs) in the low pg g−1 range and absolute LODs down to the attomol range. In this chapter, we focus on new applications where the multi-element capability of ICP-MS is used for detection of lanthanoides or rare earth elements, which are applied as elemental stains or tags of biomolecules and in particular of antibodies. KW - ICP-MS KW - Life sciences KW - Mass cytometry KW - Laser ablation (LA)-ICP-MS KW - Bioimaging PY - 2016 DO - https://doi.org/10.1515/psr-2016-0064 SN - 2365-659X SN - 2365-6581 VL - 1 IS - 11 SP - 1 EP - 19 AN - OPUS4-40234 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Theiner, S. A1 - Löhr, Konrad A1 - Köllensperger, G. A1 - Müller, L. A1 - Jakubowski, Norbert T1 - Single-cell analysis by use of ICP-MS N2 - This tutorial review article is highlighting the fundamentals, instrumentation, and most recent trends of single-cell analysis by use of inductively coupled plasma-mass spectrometry (ICP-MS). It is shown that metals and hetero-elements being intrinsically present in cells, taken up by cells (for instance engineered metallic nanoparticles) or binding to a cell can be detected qualitatively by existing ICP-MS Technologies on a single cell level. Adding a quantitative dimension to single-cell analysis by (laser ablation-) ICP-MS requires dedicated calibration and validation strategies, which are currently being established and are being critically discussed. In a tutorial part, the ICP-MS instruments, the measurement conditions, and the sample introduction and preparation techniques are introduced. The application section focuses on the state-of-the-art of single-cell analysis in suspension, using laser ablation or (imaging) mass cytometry. Finally, future trends are critically assessed. KW - Cell KW - ICP KW - ICP-MS KW - Laser ablation PY - 2020 DO - https://doi.org/10.1039/d0ja00194e SN - 0267-9477 VL - 35 IS - 9 SP - 1784 EP - 1813 PB - The Royal Society of Chemistry CY - Cambridge, UK AN - OPUS4-51448 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - Tools for metallomics: ICP-MS T2 - 4th International Symposium on Metallomics 2013 CY - Oviedo, Spain DA - 2013-07-08 PY - 2013 AN - OPUS4-28817 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - Imaging mittels Laser-ablation-ICP-MS T2 - Ringvorlesung Analytik CY - Berlin, Germany DA - 2013-06-28 PY - 2013 AN - OPUS4-28818 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Larissa A1 - Traub, Heike A1 - Jakubowski, Norbert A1 - Drescher, Daniela A1 - Baranov, Vladimir A1 - Kneipp, Janina T1 - Trends in single-cell analysis by use of ICP-MS N2 - The analysis of single cells is a growing research field in many disciplines such as toxicology, medical diagnosis, drug and cancer research or metallomics, and different methods based on microscopic, mass spectrometric, and spectroscopic techniques are under investigation. This review focuses on the most recent trends in which inductively coupled plasma mass spectrometry (ICP-MS) and ICP optical emission spectrometry (ICP-OES) are applied for single-cell analysis using metal atoms being intrinsically present in cells, taken up by cells (e.g., nanoparticles), or which are artificially bound to a cell. For the latter, especially element tagged antibodies are of high interest and are discussed in the review. The application of different sample introduction systems for liquid analysis (pneumatic nebulization, droplet generation) and elemental imaging by laser ablation ICP-MS (LA-ICP-MS) of single cells are highlighted. Because of the high complexity of biological systems and for a better understanding of processes and dynamics of biologically or medically relevant cells, the authors discuss the idea of 'multimodal spectroscopies.' KW - Bioanalytical methods KW - Cell systems/single cell analysis KW - Mass spectrometry/ICP-MS PY - 2014 DO - https://doi.org/10.1007/s00216-014-8143-7 SN - 1618-2642 SN - 1618-2650 VL - 406 IS - 27 SP - 6963 EP - 6977 PB - Springer CY - Berlin AN - OPUS4-31717 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Büchner, Tina A1 - Drescher, Daniela A1 - Traub, Heike A1 - Schrade, P. A1 - Bachmann, S. A1 - Jakubowski, Norbert A1 - Kneipp, Janina T1 - Relating surface-enhanced Raman scattering signals of cells to gold nanoparticle aggregation as determined by LA-ICP-MS micromapping N2 - The cellular response to nanoparticle exposure is essential in various contexts, especially in nanotoxicity and nanomedicine. Here, 14-nm gold nanoparticles in 3T3 fibroblast cells are investigated in a series of pulse-chase experiments with a 30-min incubation pulse and chase times ranging from 15 min to 48 h. The gold nanoparticles and their aggregates are quantified inside the cellular ultrastructure by laser ablation inductively coupled plasma mass spectrometry micromapping and evaluated regarding the surface-enhanced Raman scattering (SERS) signals. In this way, both information about their localization at the micrometre scale and their molecular nanoenvironment, respectively, is obtained and can be related. Thus, the nanoparticle pathway from endocytotic uptake, intracellular processing, to cell division can be followed. It is shown that the ability of the intracellular nanoparticles and their accumulations and aggregates to support high SERS signals is neither directly related to nanoparticle amount nor to high local nanoparticle densities. The SERS data indicate that aggregate geometry and interparticle distances in the cell must change in the course of endosomal maturation and play a critical role for a specific gold nanoparticle type in order to act as efficient SERS nanoprobe. This finding is supported by TEM images, showing only a minor portion of aggregates that present small interparticle spacing. The SERS spectra obtained after different chase times show a changing composition and/or structure of the biomolecule corona of the gold nanoparticles as a consequence of endosomal processing. KW - Gold nanoparticles KW - Surface-enhanced Raman scattering KW - LA-ICP-MS KW - Fibroblast KW - Cell KW - Particle aggregation KW - Endosome PY - 2014 DO - https://doi.org/10.1007/s00216-014-8069-0 SN - 1618-2642 SN - 1618-2650 VL - 406 IS - 27 SP - 7003 EP - 7014 PB - Springer CY - Berlin AN - OPUS4-31718 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - Development of ICP-MS based tools for metallomics: To study the uptake and function of metals in cells T2 - SCIX 2014 CY - Reno, NV, USA DA - 2014-09-28 PY - 2014 AN - OPUS4-31895 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - Single Cell analysis by Elemental Mass Spectrometry T2 - AnalytiX 2013 CY - Suzhou, China DA - 2013-03-21 PY - 2013 AN - OPUS4-27963 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - Entwicklung von Methoden zur quantitativen Analyse von Nanopartikeln in biologischen Proben T2 - BfR-Seminar CY - Berlin, Germany DA - 2014-06-04 PY - 2014 AN - OPUS4-30780 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - High resolution laser ablation NWR-Image system for single cell imaging T2 - 2016 Winter Conference on Plasma Spectrochemistry CY - Tucson, Arizona, USA DA - 2016-01-10 PY - 2016 AN - OPUS4-35285 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - ICP-MS based methods for the quantitative analysis of nanoparticles in biological samples T2 - 5th International Symposium on Metallomics 2015 CY - Beijing, China DA - 2015-09-09 PY - 2015 AN - OPUS4-34524 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - Bio- and immuno-imaging by use of laser ablation ICP-MS N2 - Imuno-histochemical staining (IHC) of cancer biomarker on tissue sections is one of the most important analytical techniques for cancer diagnosis although standardization and quality management is tedious and differ significantly from clinic to clinic. Combining established IHC staining strategies with modern quantitative methods would increase it`s potential. We used element mass spectrometry (ICP-MS) and a new ink-jet printed internal standardization approach in combination with IHC staining. The printing strategy was utilized to improve elemental image resolution and reproducibility of paraffin embedded breast cancer tissue sections in laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) after conventional IHC staining as a model system to investigate the new capabilities of this technique. T2 - European Winter Conference on Plasma Spectrochemistry 2016 CY - Tucson, Arizona, USA DA - 10.01.2016 KW - Laser Ablation KW - ICP-MS KW - Bio-Imaging PY - 2016 AN - OPUS4-36492 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - Bio- and immuno-imaging by use of laser ablation ICP-MS N2 - Imuno-histochemical staining (IHC) of cancer biomarker on tissue sections is one of the most important analytical techniques for cancer diagnosis although standardization and quality management is tedious and differ significantly from clinic to clinic. Combining established IHC staining strategies with modern quantitative methods would increase it`s potential. We used element mass spectrometry (ICP-MS) and a new ink-jet printed internal standardization approach in combination with IHC staining. The printing strategy was utilized to improve elemental image resolution and reproducibility of paraffin embedded breast cancer tissue sections in laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) after conventional IHC staining as a model system to investigate the new capabilities of this technique. T2 - Ringvorlesung Analytik, Humboldt Universität zu Berlin CY - Berlin, Germany DA - 10.06.2016 KW - Laser ablation KW - Bio-imaging KW - Immuno-assays PY - 2016 AN - OPUS4-36476 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - Novel strategies for standardization and calibration in Laser Ablation ICP-MS N2 - Elemental imaging of biological samples (bio-imaging) using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) provides spatially resolved information on element distribution (qualitative and quantitative) in thin sections of biological samples. By rastering with a laser across the sample, a two-dimensional image of the elemental distribution can be reconstructed that shows the relative intensities of the respective elements. However the method is hampered by a lack of internal standards and quantification concepts, which will be discussed in this lecture in more detail. In liquid analysis the internal standard is used for drift correction and calibration and thus it is required that the standard should have similar physical and chemical properties similar to the analyte element during the pneumatic nebulization process, the transport, ionization and transmission into the ICP-MS. In laser ablation it should correct additionally for differences in the ablation process by laser instabilities or changes of sample properties to compensate variations or drift effects during the LA process. T2 - SALSA Lecture CY - Berlin, Germany DA - 14.06.2016 KW - Standardization KW - Calibration KW - LA-ICP-MS PY - 2016 AN - OPUS4-37164 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - Method development for metal detection at cellular levels by ICP-MS N2 - An overview about different analytical approaches will be presented of how to detect metals in individual biological cells by use of ICP-MS. For this purpose, we are using different sample introduction systems for ICP-MS for detection, imaging and quantification of metals at cellular levels. By use of laser ablation, we have studied the up-take by and distribution of nanoparticles in single cells. Recently we have developed staining techniques to measure protein and DNA content of cells and identifying the cell status by immunoassays using metal-tagging of antibodies. New research based on cell arrays will be shortly discussed. Using pneumatic nebulization and microdroplet generation, we have also studied the up-take of nanoparticles and toxic metals as well as essential elements in single cells using different ICP-MS mass spectrometric concepts (sector field instrument, triple-quad instrument, time of flight (CyTOF) instrument). The different ICP-MS based methods will be compared concerning their analytical figures of merit and their strengths and weaknesses will be evaluated. T2 - Projektmeeting CY - Bremen, Germany DA - 18.04.2018 KW - Single cell ICP-MS KW - LA-ICP-MS with cellular resolution KW - Nanoparticles PY - 2018 AN - OPUS4-44851 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - Method development for metal detection at cellular levels by ICP-MS N2 - An overview about different analytical approaches will be presented of how to detect metals in individual biological cells by use of ICP-MS. For this purpose, we are using different sample introduction systems for ICP-MS for detection, imaging and quantification of metals at cellular levels. By use of laser ablation, we have studied the up-take by and distribution of nanoparticles in single cells. Recently we have developed staining techniques to measure protein and DNA content of cells and identifying the cell status by immunoassays using metal-tagging of antibodies. New research based on cell arrays will be shortly discussed. Using pneumatic nebulization and microdroplet generation, we have also studied the up-take of nanoparticles and toxic metals as well as essential elements in single cells using different ICP-MS mass spectrometric concepts (sector field instrument, triple-quad instrument, time of flight (CyTOF) instrument). The different ICP-MS based methods will be compared concerning their analytical figures of merit and their strengths and weaknesses will be evaluated. T2 - 16th Czech-Slovak Spectroscopic Conference CY - Luhacovice, Czech Republic DA - 27.05.2018 KW - Single cell analysis KW - ICP-MS KW - Nanoparticles PY - 2018 AN - OPUS4-45161 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Drescher, D. A1 - Traub, Heike A1 - Büchner, T. A1 - Jakubowski, Norbert A1 - Kneipp, J. T1 - Properties of in situ generated gold nanoparticles in the cellular context N2 - Gold nanostructures that serve as probes for nanospectroscopic analysis of eukaryotic cell cultures can be obtained by the in situ reduction of tetrachloroauric acid (HAuCl4). To understand the formation process of such intracellularly grown particles depending on the incubation medium, the reaction was carried out with 3T3 fibroblast cells in three different incubation media, phosphate buffer, Dulbecco's Modified Eagle Medium (DMEM), and standard cell culture medium (DMEM with fetal calf serum). The size, the optical properties, the biomolecular corona, and the localization of the gold nanoparticles formed in situ vary for the different conditions. The combination of surface-enhanced Raman scattering (SERS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) microscopic mapping and transmission electron microscopy (TEM) provides complementary perspectives on plasmonic nanoparticles and non-plasmonic gold compounds inside the cells. While for the incubation with HAuCl4 in PBS, gold particles provide optical signals from the nucleus, the incubation in standard cell culture medium leads to scavenging of the toxic molecules and the formation of spots of high gold concentration in the cytoplasm without formation of SERS-active particles inside the cells. The biomolecular corona of nanoparticles formed in situ after incubation in buffer and DMEM differs, suggesting that different intracellular molecular species serve for reduction and stabilization. Comparison with data obtained from ready-made gold nanoparticles suggests complementary application of in situ and ex situ generated nanostructures for optical probing. KW - Nanoparticles KW - Laser ablation KW - ICP-MS KW - SERS KW - Cell PY - 2017 DO - https://doi.org/10.1039/C7NR04620K SN - 2040-3372 VL - 9 IS - 32 SP - 11647 EP - 11656 PB - The Royal Society of Chemistry RSC CY - Cambridge, UK AN - OPUS4-41871 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Jakubowski, Norbert A1 - Müller, Larissa A1 - Traub, Heike A1 - Esteban-Fernandez, Diego A1 - Panne, Ulrich A1 - Herrmann, Antje A1 - Schellenberger, E. A1 - Kneipp, Janina T1 - Lecture 5 Bio- and immuno-imaging by use of laser ablation ICP-MS N2 - ICP-MS is a well-established analytical method which excels by high accuracy, high dynamic range and extremely low limits of detection for most metals. Furthermore ICP-MS offers a very high multi-element coverage so that many elements of the periodic table can be detected simultaneously. In this series of lectures, we want to focus on the historical developments, fundamentals, instrumentation and novel applications of ICP-MS in the life and material sciences. KW - Imaging KW - Laser ablation ICP-MS PY - 2017 AN - OPUS4-40943 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Müller, L. A1 - Traub, Heike A1 - Jakubowski, Norbert ED - Prof. Dr. Golloch, Alfred T1 - Novel applications of lanthanoides as analytical or diagnostic tools in the life sciences by ICP-MS-based techniques N2 - Inductively coupled plasma mass spectrometry (ICP-MS) is a well-established analytical method for multi-elemental analysis in particular for elements at trace and ultra-trace levels. It has found acceptance in various application areas during the last decade. ICP-MS is also more and more applied for detection in the life sciences. For these applications, ICP-MS excels by a high sensitivity, which is independent of the molecular structure of the analyte, a wide linear dynamic range and by excellent multi-element capabilities. Furthermore, methods based on ICP-MS offer simple quantification concepts, for which usually (liquid) standards are applied, low matrix effects compared to other conventional bioanalytical techniques, and relative limits of detection (LODs) in the low pg g−1 range and absolute LODs down to the attomol range. In this chapter, we focus on new applications where the multi-element capability of ICP-MS is used for detection of lanthanoides or rare earth elements, which are applied as elemental stains or tags of biomolecules and in particular of antibodies. KW - ICP-MS KW - Life sciences KW - Mass cytometry KW - Laser ablation (LA)-ICP-MS KW - Bioimaging PY - 2017 SN - 978-3-11-036523-8 SP - Chapter 11, 301 EP - 320 PB - De Gruyter AN - OPUS4-40244 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - Method development for metal detection at cellular levels N2 - An overview about different analytical approaches will be presented of how to detect metals in individual biological cells by use of ICP-MS. For this purpose, we are using different sample introduction systems for ICP-MS for detection, imaging and quantification of metals at cellular levels. By use of laser ablation, we have studied the up-take by and distribution of nanoparticles in single cells. Recently we have developed staining techniques to measure protein and DNA content of cells and identifying the cell status by immunoassays using metal-tagging of antibodies. New research based on cell arrays will be shortly discussed. Using pneumatic nebulization and microdroplet generation, we have also studied the up-take of nanoparticles and toxic metals as well as essential elements in single cells using different ICP-MS mass spectrometric concepts (sector field instrument, triple-quad instrument, time of flight (CyTOF) instrument). The different ICP-MS based methods will be compared concerning their analytical figures of merit and their strengths and weaknesses will be evaluated. T2 - Metallomics 2017 CY - Vienna, Austria DA - 14.08.2017 KW - Single cell analysis KW - Laser ablation KW - Nanoparticles KW - ICP-MS PY - 2017 AN - OPUS4-41690 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - Method development for metal detection at cellular levels N2 - An overview about different analytical approaches will be presented of how to detect metals in individual biological cells by use of ICP-MS. For this purpose, we are using different sample introduction systems for ICP-MS for detection, imaging and quantification of metals at cellular levels. By use of laser ablation, we have studied the up-take by and distribution of metallic nanoparticles (Ag, Au) in single adherent cells (fibroblast cell line). Recently, we have developed staining techniques to image the protein (by a lanthanide containing chelate) and DNA (by an Ir-containing intercalator) distribution in single cells which can be combined with the nanoparticle studies. Additionally, we have developed an immunoassay by use of metal-tagged antibodies to identify the cell status of individual cells. Using pneumatic nebulization or microdroplet generation, we have also studied the up-take of nanoparticles and toxic metals as well as essential elements in single suspension cells using different ICP-MS mass spectrometric concepts (sector field instrument, triple-quad instrument, time of flight (CyTOF) instrument). For this purpose, the ICP-MS was operated in the single particle mode. First results of single cell ICP-MS (scICP-MS) will be presented for up-take of metallic (Ag) nanoparticles by THP 1 and macrophage cells and the strength of the different instruments will be discussed. T2 - 10th International Conference on Instrumental Methods of Analysis - IMA-2017 CY - Heraklion, Greece DA - 17.09.2017 KW - Imaging by LA-ICP-MS KW - Immunoassay KW - Metal-tagged antibodies PY - 2017 AN - OPUS4-42187 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Phukphatthanachai, Pranee A1 - Vogl, Jochen A1 - Traub, Heike A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - A new approach of using polyethylene frits for the quantification of sulphur in copper metals by isotope dilution LA-ICP-MS and comparison with conventional IDMS techniques N2 - Polyethylene (PE) frits were used to quantify sulphur in copper and its alloys by isotope dilution combined with LA-ICP-MS as an alternative approach to conventional sample preparation: the copper samples were spiked, the spiked samples were dissolved, the resulting solutions were absorbed in the PE frits and finally the PE frits were analysed by LA-ICP-MS. A prerequisite for such a support material is a low sulphur blank and thus PE was selected for this purpose. The absorption efficiency of the PE frits was studied for varying sulphur amounts ranging from 2 mg S to 80 mg S showing that more than 99.5% of the loaded sulphur was absorbed by the frit. The so prepared PE frits were measured by LA-ICP-MS and yielded a good linearity (R2 ¼ 0.999) for the sulphur ion intensities corresponding to sulphur amounts up to 40 mg S; the associated sensitivity is approximately 3.4 x 10⁴ cps μg⁻¹ for ³²S. For the validation of the developed procedure the reference materials BAM-M376a, BAM-228 and BAM-227 were applied such that 2 μg S, 5 μg S and 11 μg S were absorbed in the PE frits, respectively. These samples were pre-quantified for the adsorbed sulphur amount by external calibration LA-ICP-MS yielding sulphur amounts of 0.9 μg, 5.1 μg and 8.5 μg (quantified for ³²S only), respectively. Relative Standard deviations of the isotope ratios were below 5% in average (n ¼ 3 lines) in all cases (except for the pure spike solution). These samples were then analysed by LA-ICP-IDMS and the measurement results were validated by comparing them with the results obtained by conventional ICP-IDMS. The obtained relative expanded measurement uncertainties ranged between 10% and 26%. Pearson's coefficient was used to express the correlation between both techniques; the obtained value was 0.999 demonstrating a strong correlation. Contrary to most published LA-ICP-IDMS procedures, the developed procedure enables SI-traceability for the measurement results. The metrological traceability to the SI for the sulphur mass fractions in copper was established by an unbroken chain of comparisons, each accompanied by an uncertainty budget. Thus, the measurement results are considered reliable, acceptable and comparable within the stated measurement uncertainty. The metrological traceability chain from the kg down to mass fraction in the samples obtained by LA-ICP-IDMS is presented as well. KW - Laser ablation KW - IDMS KW - Traceability KW - Uncertainty KW - Purity PY - 2018 DO - https://doi.org/10.1039/c8ja00116b SN - 0267-9477 SN - 1364-5544 VL - 33 IS - 9 SP - 1506 EP - 1517 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-45899 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Drescher, Daniela A1 - Giesen, Charlotte A1 - Traub, Heike A1 - Panne, Ulrich A1 - Kneipp, Janina A1 - Jakubowski, Norbert T1 - Quantitative imaging of gold and silver nanoparticles in single eukaryotic cells by laser ablation ICP-MS N2 - Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was utilized for spatially resolved bioimaging of the distribution of silver and gold nanoparticles in individual fibroblast cells upon different incubation experiments. High spatial resolution was achieved by optimization of scan speed, ablation frequency, and laser energy. Nanoparticles are visualized with respect to cellular substructures and are found to accumulate in the perinuclear region with increasing incubation time. On the basis of matrix-matched calibration, we developed a method for quantification of the number of metal nanoparticles at the single-cell level. The results provide insight into nanoparticle/cell interactions and have implications for the development of analytical methods in tissue diagnostics and therapeutics. KW - Imaging KW - Cell KW - Nanoparticles KW - Laser ablation KW - ICP-MS PY - 2012 DO - https://doi.org/10.1021/ac302639c SN - 0003-2700 SN - 1520-6882 VL - 84 IS - 22 SP - 9684 EP - 9688 PB - American Chemical Society CY - Washington, DC AN - OPUS4-27440 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - Imaging of metals in biological and clinical samples by use of LA-ICP-MS: Challenges and limitations! T2 - 9. ASAC JunganalytikerInnen Forum CY - Vienna, Austria DA - 2013-06-21 PY - 2013 AN - OPUS4-28816 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Shigeta, K. A1 - Traub, Heike A1 - Panne, Ulrich A1 - Okino, A. A1 - Rottmann, L. A1 - Jakubowski, Norbert T1 - Application of a micro-droplet generator for an ICP-sector field mass spectrometer - optimization and analytical characterization N2 - A micro-droplet generator (µDG) sample introduction system was coupled to a sector field ICP-MS instrument to investigate the analytical figures of merit with respect to single cell analysis. The sector field instrument was operated for the first time in a fast scanning mode (E-scan) with the shortest time resolution of 100 µs to measure the single droplet time resolved and using the original detector in a pulse counting mode without modification of the existing electronics. For reduction of the droplet diameter a triple pulse mode of the droplet generator was applied and a droplet diameter down to 23 µm has been achieved for this investigation with a 100% transport efficiency of droplets. Signal duration times of single droplets of less than 500 µs have been measured. Overall detection efficiencies in the range of 10-3 counts per atom have been achieved and absolute limits of detection range between 120 ag for Fe and 1.1 ag for Mg as a mean value from 1000 droplet events. PY - 2013 DO - https://doi.org/10.1039/c2ja30207a SN - 0267-9477 SN - 1364-5544 VL - 28 IS - 5 SP - 646 EP - 656 PB - Royal Society of Chemistry CY - London AN - OPUS4-29447 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - Quantitative analysis of cell cultures treated with metallic nanoparticles using laser ablation ICP-MS T2 - SCIX 2014 CY - Reno, NV, USA DA - 2014-09-28 PY - 2014 AN - OPUS4-31896 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - ICP-MS based methods for the quantitative analysis of nanoparticles in biological samples T2 - 1st Joint Symposium on Nanotechnology - Bundesinstitut für Risikobewertung CY - Berlin, Gemany DA - 2015-03-05 PY - 2015 AN - OPUS4-32822 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - Laser Ablation ICP-MS: A new tool for Bio-Imaging T2 - Eingeladener Vortrag an der Universität Graz CY - Graz, Austria DA - 2015-05-22 PY - 2015 AN - OPUS4-33255 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lindner, Uwe A1 - Lingott, Jana A1 - Richter, Silke A1 - Jiang, W. A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Analysis of Gadolinium-based contrast agents in tap water with a new hydrophilic interaction chromatography (ZIC-cHILIC) hyphenated with inductively coupled plasma mass spectrometry N2 - Hydrophilic interaction chromatography (HILIC) coupled with inductively coupled plasma mass spectrometry (ICP-MS) were optimised for the direct determination of gadolinium-based contrast agents in tap water. In comparison to our previous work, a new developed zwitterionic HILIC column (ZIC-cHILIC) was used for speciation of Gd-containing contrast agents. The limit of quantification (LOQ) for the five contrast agents Gd-BOPTA, Gd-DPTA-BMA, Gd-BT-DO3A, Gd-DOTA and Gd-DTPA are in the range of 5–12 ng Gd per litre. Additionally, a new internal standard, Pr-DOTA, was investigated to correct intensity drifts, minor and major changes in the sample volumes and possible matrix effects. With the speciation method described, tap water samples from the area of Berlin were analysed and for the first time, three Gd species, Gd-BT-DO3A, Gd-DOTA and Gd-BOPTA, were found in tap water samples at concentrations of about 10–20 ng Gd per litre. These are the same Gd species which have been previously detected predominantly in surface waters of the Berlin area. KW - Gadolinium-based contrast agents KW - Hydrophilic interaction chromatography (HILIC) KW - Speciation KW - Inductively coupled plasma mass spectrometry (ICP-MS) KW - Internal standard KW - Berlin tap water PY - 2015 DO - https://doi.org/10.1007/s00216-014-8368-5 SN - 1618-2642 SN - 1618-2650 VL - 407 IS - 9 SP - 2415 EP - 2422 PB - Springer CY - Berlin AN - OPUS4-32982 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lindner, Uwe A1 - Lingott, Jana A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Detection of Gadolinium - Contrast agents in surface water and plants N2 - For years an increased concentration of gadolinium has been observed in the environment. This can be traced back to its use in medicine, as gadolinium has been used for about 25 years in hospitals as a contrast agent for magnetic resonance imaging (MRI). PY - 2014 SN - 1611-4132 SN - 1611-6038 VL - 34 IS - 1 SP - 20 EP - 23 PB - GIT-Verl., Wiley-VCH CY - Weinheim AN - OPUS4-30803 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chan, George C.-Y. A1 - Hieftje, Gary M. A1 - Omenetto, Nicoló A1 - Axner, Ove A1 - Bengtson, Arne A1 - Bings, Nicolas H. A1 - Blades, Michael W. A1 - Bogaerts, Annemie A1 - Bolshov, Mikhail A. A1 - Broekaert, José A.C. A1 - Chan, WingTat A1 - Costa-Fernández, José M. A1 - Crouch, Stanley R. A1 - De Giacomo, Alessandro A1 - D’Ulivo, Alessandro A1 - Engelhard, Carsten A1 - Falk, Heinz A1 - Farnsworth, Paul B. A1 - Florek, Stefan A1 - Gamez, Gerardo A1 - Gornushkin, Igor B. A1 - Günther, Detlef A1 - Hahn, David W. A1 - Hang, Wei A1 - Hoffmann, Volker A1 - Jakubowski, Norbert A1 - Karanassios, Vassili A1 - Koppenaal, David W. A1 - Kenneth Marcus, R. A1 - Noll, Reinhard A1 - Olesik, John W. A1 - Palleschi, Vincenzo A1 - Panne, Ulrich A1 - Pisonero, Jorge A1 - Ray, Steven J. A1 - Resano, Martín A1 - Russo, Richard E. A1 - Scheeline, Alexander A1 - Smith, Benjamin W. A1 - Sturgeon, Ralph E. A1 - Todolí, José-Luis A1 - Tognoni, Elisabetta A1 - Vanhaecke, Frank A1 - Webb, Michael R. A1 - Winefordner, James D. A1 - Yang, Lu A1 - Yu, Jin A1 - Zhang, Zhanxia T1 - Landmark Publications in Analytical Atomic Spectrometry: Fundamentals and Instrumentation Development N2 - The almost-two-centuries history of spectrochemical analysis has generated a body of literature so vast that it has become nearly intractable for experts, much less for those wishing to enter the field. Authoritative, focused reviews help to address this problem but become so granular that the overall directions of the field are lost. This broader perspective can be provided partially by general overviews but then the thinking, experimental details, theoretical underpinnings and instrumental innovations of the original work must be sacrificed. In the present compilation, this dilemma is overcome by assembling the most impactful publications in the area of analytical atomic spectrometry. Each entry was proposed by at least one current expert in the field and supported by a narrative that justifies its inclusion. The entries were then assembled into a coherent sequence and returned to contributors for a round-robin review. KW - Analytical atomic spectrometry KW - Spectroscopy KW - Instrumental analysis PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-621588 DO - https://doi.org/10.1177/00037028241263567 SN - 1943-3530 VL - 78 SP - 1 EP - 456 PB - Sage CY - London AN - OPUS4-62158 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lingott, Jana A1 - Lindner, Uwe A1 - Telgmann, Lena A1 - Esteban-Fernández, Diego A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Gadolinium-uptake by aquatic and terrestrial organisms-distribution determined by laser ablation inductively coupled plasma mass spectrometry N2 - The uptake of gadolinium containing chelates by plants and animals grown in exposed water or on soil irrigated with exposed water was investigated. Gd contrast agents was studied by monitoring the elemental distribution with laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). KW - Gadolinium-uptake KW - Speciation KW - HILIC KW - ICP-MS PY - 2016 DO - https://doi.org/10.1039/c5em00533g SN - 2050-7887 VL - 18 IS - 2 SP - 200 EP - 207 PB - Royal Society of Chemistry CY - Cambridge, UK AN - OPUS4-36281 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - Speciation of gadolinium based MRI contrast agents in environmental water samples using hydrophilic interaction chromatography coupled to inductively coupled plasma mass spectrometry T2 - Third International Symposium on Metallomics CY - Münster, Germany DA - 2011-06-15 PY - 2011 AN - OPUS4-24106 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - Measurement and detection of labelled antibodies: New applications in oncology an pathology T2 - AbCAP, Projekt Meeting BMBF CY - Berlin, Germany DA - 2011-03-31 PY - 2011 N1 - Geburtsname von Müller, Larissa: Wäntig, L. - Birth name of Müller, Larissa: Wäntig, L. AN - OPUS4-23808 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - Measurement and detection of labelled antibodies: New applicacations in oncology and pathology T2 - AbCAP, Projekt Meeting BMBF CY - Berlin, Germany DA - 2011-03-31 PY - 2011 N1 - Geburtsname von Müller, Larissa: Wäntig, L. - Birth name of Müller, Larissa: Wäntig, L. AN - OPUS4-24696 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -