TY - JOUR A1 - Herrmann, Antje Jutta A1 - Techritz, Sandra A1 - Jakubowski, Norbert A1 - Haase, A. A1 - Luch, A. A1 - Panne, Ulrich A1 - Müller, Larissa T1 - A simple metal staining procedure for identification and visualization of single cells by LA-ICP-MS JF - Analyst N2 - High lateral resolution of metal detection in single cells by use of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) demands powerful staining methods. In this work different staining procedures for the single cell analysis with LA-ICP-MS were optimized. An iridium intercalator was utilized to stain the cell nuclei whereas the whole cell was stained by the use of maleimido-mono-amide-DOTA (mDOTA) complexing lanthanide(III) ions. The content of the artificially introduced metals per cell was quantified using a matrix matched calibration approach based on cellulose membranes onto which standards were spotted by a microarray spotter. Absolute metal stain amounts in the range of 2.34 to 9.81 femtomole per cell were determined. The metal staining procedures allow direct identification and visualization of single cells and their cell compartments by element microscopy without the use of bright field images of the sample. KW - Single Cell Analysis KW - Bioimaging KW - LA-ICP-MS based immunoassays PY - 2017 DO - https://doi.org/10.1039/c6an02638a SN - 0003-2654 SN - 1364-5528 VL - 142 IS - 10 SP - 1703 EP - 1710 PB - The Royal Society of Chemistry AN - OPUS4-40251 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Giesen, Charlotte A1 - Jakubowski, Norbert A1 - Panne, Ulrich A1 - Weller, Michael G. T1 - Ochratoxin-A-Bestimmung in Wein mittels eines ICP-MS-basierten Immunoassays JF - Analytik News PY - 2010 UR - http://www.analytik-news.de/Fachartikel/Volltext/BAM2.pdf SP - 1 EP - 6 PB - Dr. Beyer Internet-Beratung CY - Ober-Ramstadt AN - OPUS4-22702 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert A1 - Müller, L. A1 - Traub, Heike A1 - Esteban-Fernández, D. A1 - Panne, Ulrich A1 - Wanka, Antje A1 - Schellenberger, E. A1 - Theuring, F. A1 - Kneipp, J. T1 - Method development for metal detection at cellular levels N2 - An overview about different analytical approaches will be presented of how to detect metals in individual biological cells by use of ICP-MS. For this purpose, we are using different sample introduction systems for ICP-MS for detection, imaging and quantification of metals at cellular levels. By use of laser ablation, we have studied the up-take by and distribution of nanoparticles in single cells. Recently we have developed staining techniques to measure protein and DNA content of cells and identifying the cell status by immunoassays using metal-tagging of antibodies. New research based on cell arrays will be shortly discussed. Using pneumatic nebulization and microdroplet generation, we have also studied the up-take of nanoparticles and toxic metals as well as essential elements in single cells using different ICP-MS mass spectrometric concepts (sector field instrument, triple-quad instrument, time of flight (CyTOF) instrument). The different ICP-MS based methods will be compared concerning their analytical figures of merit and their strengths and weaknesses will be evaluated. T2 - Metallomics 2017 CY - Vienna, Austria DA - 14.08.2017 KW - Single cell analysis KW - Laser ablation KW - Nanoparticles KW - ICP-MS PY - 2017 AN - OPUS4-41690 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chinthalapati, Siva Kesava Raju A1 - Lück, Detlef A1 - Scharf, Holger A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - A novel solid phase extraction method for pre-concentration of gadolinium and gadolinium based MRI contrast agents from the environment JF - Journal of analytical atomic spectrometry N2 - An efficient solid phase extraction (SPE) method using bis-(2-ethylhexyl)-phosphate (HDEHP) coated reverse phase C18 support has been developed for the pre-concentration of Gadolinium (Gd) and Gd contrast agents widely used in magnetic resonance imaging (MRI). Enrichment of Gd in the ionic form has been compared with strong cation exchange material Chromabond SA (SCX), weak ion exchange material Chelex-100 and also with lanthanide specific HDEHP modified reverse phase C18. The determination of Gd and its complexes after enrichment were performed using inductively coupled plasma mass spectrometry (ICP-MS) and on the basis of 158Gd. Among the three SPE materials, HDEHP coated reverse phase C18 SPE has been found to be most efficient, yielding a hundredfold Gd enrichment with > 95% recovery for linear and cyclic contrast agents like Gd-DTPA (Magnevist), Gd-DOTA (Dotarem), Gd-BOPTA (Multihance), and Gd-BT-DO3A (Gadovist). The developed SPE method has been successfully applied to the surface water and waste water samples originated from different places in Berlin, Germany. The results were in good agreement with the results obtained with direct measurement with ICP-MS. The developed pre-concentration method can be efficiently used for the determination of trace levels of gadolinium in the environment even with less sensitive analytical techniques. KW - Solid phase extraction KW - Magnetic resonance imaging KW - Gadolinium KW - Gd based contrast agents KW - Chelex-100 KW - HDEHP KW - Speciation PY - 2010 DO - https://doi.org/10.1039/c003251d SN - 0267-9477 SN - 1364-5544 VL - 25 IS - 10 SP - 1573 EP - 1580 PB - Royal Society of Chemistry CY - London AN - OPUS4-21985 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert A1 - Sugiyama, Kaori A1 - Traub, Heike A1 - Panne, Ulrich A1 - Rampler, Evelyn A1 - Köllensperger, G. A1 - Drescher, Daniela A1 - Giesen, Charlotte A1 - Kneipp, Janina T1 - Single Cell analysis by Elemental Mass Spectrometry T2 - AnalytiX 2013 T2 - AnalytiX 2013 CY - Suzhou, China DA - 2013-03-21 PY - 2013 AN - OPUS4-27963 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - López-Serrano Oliver, Ana A1 - Baumgart, S. A1 - Bremser, Wolfram A1 - Flemig, Sabine A1 - Wittke, D. A1 - Grützkau, A. A1 - Luch, A. A1 - Haase, A. A1 - Jakubowski, Norbert T1 - Quantification of silver nanoparticles taken up by single cells using inductively coupled plasma mass spectrometry in the single cell measurement mode JF - Journal of Analytical Atomic Spectrometry N2 - The impact of nanoparticles, NPs, at the single cell level has become a major field of toxicological research and different analytical methodologies are being investigated to obtain biological and toxicological information to better understand the mechanisms of cell–NP interactions. Here, inductively coupled plasma mass spectrometry in the single cell measurement mode (SC-ICP-MS) is proposed to study the uptake of silver NPs, AgNPs, with a diameter of 50 nm by human THP-1 monocytes in a proof-ofprinciple experiment. The main operating parameters of SC-ICP-MS have been optimized and applied for subsequent quantitative analysis of AgNPs to determine the number of particles in individual cells using AgNP suspensions for calibration. THP-1 cells were incubated with AgNP suspensions with concentrations of 0.1 and 1 µg/mL for 4 and 24 hours. The results reveal that the AgNP uptake by THP-1 monocytes is minimal at the lower dose of 0.1 µg/mL (roughly 1 AgNP per cell was determined), whereas a large cell-to-cell variance dependent on the exposure time is observed for a 10 times higher concentration (roughly 7 AgNPs per cell). The method was further applied to monitor the AgNP uptake by THP-1 cells differentiated macrophages incubated at the same AgNP concentration levels and exposure times demonstrating a much higher AgNP uptake (roughly from 9 to 45 AgNPs per cell) that was dependent on exposure concentration and remained constant over time. The results have been compared and validated by sample digestion followed by ICP-MS analysis as well as with other alternative promising techniques providing single cell analysis. KW - Silbernanopartikel KW - ICP-MS KW - Einzelzellanalyse PY - 2018 DO - https://doi.org/10.1039/C7JA00395A SN - 0267-9477 VL - 33 IS - 7 SP - 1256 EP - 1263 PB - Royal Society of Chemistry CY - London AN - OPUS4-45473 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Phukphatthanachai, Pranee A1 - Vogl, Jochen A1 - Traub, Heike A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - A new approach of using polyethylene frits for the quantification of sulphur in copper metals by isotope dilution LA-ICP-MS and comparison with conventional IDMS techniques JF - Journal of Analytical Atomic Spectrometry N2 - Polyethylene (PE) frits were used to quantify sulphur in copper and its alloys by isotope dilution combined with LA-ICP-MS as an alternative approach to conventional sample preparation: the copper samples were spiked, the spiked samples were dissolved, the resulting solutions were absorbed in the PE frits and finally the PE frits were analysed by LA-ICP-MS. A prerequisite for such a support material is a low sulphur blank and thus PE was selected for this purpose. The absorption efficiency of the PE frits was studied for varying sulphur amounts ranging from 2 mg S to 80 mg S showing that more than 99.5% of the loaded sulphur was absorbed by the frit. The so prepared PE frits were measured by LA-ICP-MS and yielded a good linearity (R2 ¼ 0.999) for the sulphur ion intensities corresponding to sulphur amounts up to 40 mg S; the associated sensitivity is approximately 3.4 x 10⁴ cps μg⁻¹ for ³²S. For the validation of the developed procedure the reference materials BAM-M376a, BAM-228 and BAM-227 were applied such that 2 μg S, 5 μg S and 11 μg S were absorbed in the PE frits, respectively. These samples were pre-quantified for the adsorbed sulphur amount by external calibration LA-ICP-MS yielding sulphur amounts of 0.9 μg, 5.1 μg and 8.5 μg (quantified for ³²S only), respectively. Relative Standard deviations of the isotope ratios were below 5% in average (n ¼ 3 lines) in all cases (except for the pure spike solution). These samples were then analysed by LA-ICP-IDMS and the measurement results were validated by comparing them with the results obtained by conventional ICP-IDMS. The obtained relative expanded measurement uncertainties ranged between 10% and 26%. Pearson's coefficient was used to express the correlation between both techniques; the obtained value was 0.999 demonstrating a strong correlation. Contrary to most published LA-ICP-IDMS procedures, the developed procedure enables SI-traceability for the measurement results. The metrological traceability to the SI for the sulphur mass fractions in copper was established by an unbroken chain of comparisons, each accompanied by an uncertainty budget. Thus, the measurement results are considered reliable, acceptable and comparable within the stated measurement uncertainty. The metrological traceability chain from the kg down to mass fraction in the samples obtained by LA-ICP-IDMS is presented as well. KW - Laser ablation KW - IDMS KW - Traceability KW - Uncertainty KW - Purity PY - 2018 DO - https://doi.org/10.1039/c8ja00116b SN - 0267-9477 SN - 1364-5544 VL - 33 IS - 9 SP - 1506 EP - 1517 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-45899 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Jakubowski, Norbert A1 - Müller, L. A1 - Traub, Heike A1 - Esteban-Fernández, D. A1 - Panne, Ulrich A1 - Herrmann, Antje A1 - Schellenberger, E. A1 - Theuring, F. A1 - Kneipp, Janina T1 - Imaging by laser ablation ICP-MS N2 - ICP-MS is a well-established analytical method which excels by high accuracy, high dynamic range and extremely low limits of detection for most metals. Furthermore ICP-MS offers a very high multi-element coverage so that many elements of the periodic table can be detected simultaneously. In this series of lectures, we want to focus on the historical developments, fundamentals, instrumentation and novel applications of ICP-MS in the life and material sciences. T2 - Ringvorlesung Analytik CY - Humboldt-Universität zu Berlin DA - 23.06.2017 KW - Laser ablation ICP-MS KW - Bio-Imaging PY - 2017 AN - OPUS4-40757 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Löhr, Konrad A1 - Borovinskaya, O. A1 - Tourniaire, G. A1 - Panne, Ulrich A1 - Jakubowski, Norbert T1 - Arraying of single cells for quantitative high throughput laser ablation ICP-TOF-MS JF - Analytical Chemistry N2 - Arraying of single cells for mass spectrometric analysis is a considerable bioanalytical challenge. In this study, we employ a novel single cell arraying technology for quantitative analysis and isotopic fingerprinting by laser ablation inductively coupled plasma time-of-flight mass spectrometry (LA-ICP-TOF-MS). The single cell arraying approach is based on a piezo-acoustic microarrayer with software for automated optical detection of cells within the piezo dispense capillary (PDC) prior to arraying. Using optimized parameters, single cell occupancy of >99%, high throughput (up to 550 cells per hour), and a high cell recovery of >66% is achieved. LA-ICP-TOF-MS is employed to detect naturally occurring isotopes in the whole mass range as fingerprints of individual cells. Moreover, precise quantitative determination of metal-containing cell dyes is possible down to contents of ∼100 ag using calibration standards which were produced using the same arrayer. KW - Laser ablation KW - Cell KW - Array KW - ICP-MS PY - 2019 DO - https://doi.org/10.1021/acs.analchem.9b00198 SN - 0003-2700 SN - 1520-6882 VL - 91 IS - 18 SP - 11520 EP - 11528 PB - American Chemical Society (ACS Publications) CY - Washington AN - OPUS4-48985 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sötebier, Carina A1 - Bierkandt, Frank A1 - Rades, Steffi A1 - Jakubowski, Norbert A1 - Panne, Ulrich A1 - Weidner, Steffen T1 - Sample loss in asymmetric flow field-flow fractionation coupled to inductively coupled plasma-mass spectrometry of silver nanoparticles JF - Journal of analytical atomic spectrometry N2 - In this work, sample losses of silver nanoparticles (Ag NPs) in asymmetrical flow field-flow fractionation (AF4) have been systematically investigated with the main focus on instrumental conditions like focusing and cross-flow parameters as well as sample concentration and buffer composition. Special attention was drawn to the AF4 membrane. For monitoring possible silver depositions on the membrane, imaging laser ablation coupled to inductively coupled plasma mass spectrometry (LA-ICP-MS) was used. Our results show that the sample residue on the membrane was below 0.6% of the total injected amount and therefore could be almost completely avoided at low sample concentrations and optimized conditions. By investigation of the AF4 flows using inductively coupled plasma mass spectrometry (ICP-MS), we found the recovery rate in the detector flow under optimized conditions to be nearly 90%, while the cross-flow, slot-outlet flow and purge flow showed negligible amounts of under 0.5%. The analysis of an aqueous ionic Ag standard solution resulted in recovery rates of over 6% and the ionic Ag content in the sample was found to be nearly 8%. Therefore, we were able to indicate the ionic Ag content as the most important source of sample loss in this study. KW - Asymmetric flow filed-flow fractionation KW - ICP-MS KW - Nanoparticles KW - Sample loss KW - Quantification PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-336171 DO - https://doi.org/10.1039/c5ja00297d SN - 0267-9477 SN - 1364-5544 VL - 30 IS - 10 SP - 2214 EP - 2222 PB - Royal Society of Chemistry CY - London AN - OPUS4-33617 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -