TY - JOUR A1 - Nikfalazar, M. A1 - Kohler, C. A1 - Heunisch, Andreas A1 - Wiens, A. A1 - Zheng, Y. A1 - Schulz, Bärbel A1 - Mikolajek, M. A1 - Sohrabi, M. A1 - Rabe, Torsten A1 - Binder, R. A1 - Jakoby, R. T1 - LTCC phase shifters based on tunable ferroelectric composite thick films N2 - This paper presents, the investigation of tunable components based on LTCC technology, implementing ferroelectric tunable thick-film dielectric. The tunable loaded line phase shifters are fabricated with metal-insulator-metal (MIM) varactors to demonstrate the capabilities of this method for packaging of the tunable components. The MIM varactors consist of one tunable dielectric paste layer that is printed between two silver layers. The tunable ferroelectric paste is optimized for LTCC sintering temperature around 850°C. The phase shifters are fabricated in two different process. They were achieved a figure of merit of 24°/dB (phase shift 192°) at 3 GHz and 18°/dB (phase shift 98°) at 4.4 GHz by using seven unit cells that each unit cell consisting of two MIM varactors. KW - Ferroelectric KW - LTCC KW - Phase shifter KW - Fully printed component KW - BST PY - 2015 U6 - https://doi.org/10.1515/freq-2015-0082 SN - 0016-1136 SN - 2191-6349 VL - 69 IS - 11-12 SP - 451 EP - 455 PB - De Gruyter CY - Berlin ; Boston, Mass. AN - OPUS4-34949 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gaebler, A. A1 - Moessinger, A. A1 - Goelden, F. A1 - Manabe, A. A1 - Goebel, M. A1 - Follmann, R. A1 - Koether, D. A1 - Modes, C. A1 - Kipka, A. A1 - Deckelmann, M. A1 - Rabe, Torsten A1 - Schulz, Bärbel A1 - Kuchenbecker, Petra A1 - Lapanik, A. A1 - Mueller, S. A1 - Haase, W. A1 - Jakoby, R. T1 - Liquid crystal-reconfigurable antenna concepts for space applications at microwave and millimeter waves N2 - Novel approaches of tunable devices for millimeter wave applications based on liquid crystal (LC) are presented. In the first part of the paper, a novel concept of a tunable LC phase shifter realized in Low Temperature Cofired Ceramics technology is shown while the second part of the paper deals with a tunable high-gain antenna based on an LC tunable reflectarray. The reflectarray features continuously beam scanning in between ±25°. Also first investigations on radiation hardness of LCs are carried out, indicating that LCs might be suitable for space applications. KW - Tunable antenna KW - Phase shifter KW - Liquid crystal KW - LTCC PY - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-194273 SN - 1687-5877 VL - 2009 IS - Article ID 876989 SP - 1 EP - 7 PB - Hindawi Publishing Corporation CY - New York, NY, USA AN - OPUS4-19427 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -