TY - CONF A1 - Jaenisch, Gerd-Rüdiger A1 - Kolkoori, Sanjeevareddy A1 - Deresch, Andreas T1 - Influence of scattered radiation on the efficiency of dual high-energy X-Ray imaging for material characterization N2 - In this contribution, we discuss the influence of scattered radiation on materials’ effective attenuation coefficients at higher X-ray energies. The selected X-ray spectra for the dual-energy experiments correspond to 3 MV and 7.5 MV acceleration potential of the used betatron. Experiments were performed on a test phantom containing step wedges of different low- and high-Z materials. We evaluated the ratio between low- and high-energy X-ray attenuation coefficients quantitatively based on simulated poly-energetic high-energy X-ray source spectra and the detector sensitivity using the “analytical Radiographic Testing inspection simulation tool” (aRTist) developed at BAM. Furthermore, the influence of scattered radiation is evaluated using an efficient Monte-Carlo simulation. The simulation results are compared quantitatively with experimental investigations. Finally, important applications of the proposed technique in the context of aviation security are discussed. T2 - 19th World Conference on Nondestructive Testing CY - Munich, Germany DA - 13.06.2016 KW - Monte Carlo methods KW - Dual-energy imaging KW - Simulation KW - Experiments PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-365925 SN - 978-3-940283-78-8 VL - 158 SP - 1 EP - 10 PB - DGZfP CY - Berlin, Germany AN - OPUS4-36592 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bellon, Carsten A1 - Zhukovskiy, M. A1 - Markov, M. A1 - Podolyako, S. A1 - Uskov, R. A1 - Jaenisch, Gerd-Rüdiger T1 - Supercomputing the cascade processes of radiation transport N2 - Modeling of the photon-electron cascade progress in multicomponent objects of complex geometrical structure by use of hybrid supercomputers is considered. An approach to computing the cascade processes is developed. The approach has three key properties allowing the effective use of heterogeneous structure of computers for solving the tasks of radiation transport in complex multi-scale geometries. Firstly, two different discreet geometrical description of an object being under radiation is used: triangulated model for photon transport and voxel model for electron transport. Secondly, small parameter of the problem is explicitly taking into account for modeling surface effects (for instance, electron emission). Thirdly, the effective calculation decomposition between CPU and GPU is developed for significant increasing the speed of calculations of processes in question. Modeling of experiment on researching the bremsstrahlung generated by electron beam in Ta target is carried out. Comparison of computing and experimental results shows satisfactory consent. T2 - 19th World Conference on Nondestructive Testing CY - Munich, Germany DA - 13.06.2016 KW - Super somputing KW - Photon-electron transport KW - Monte Carlo methods KW - Modelling PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-365932 SN - 978-3-940283-78-8 VL - 158 SP - 1 EP - 6 PB - DGZfP CY - Berlin, Germany AN - OPUS4-36593 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bellon, Carsten A1 - Jaenisch, Gerd-Rüdiger A1 - Deresch, Andreas T1 - Combining analytical and Monte Carlo modelling for industrial radiology N2 - Modelling becomes more and more important in modern NDE. It is increasingly used to optimize techniques for complex applications, to support the preparation of written procedures, and for education purposes. To describe the complete chain of RT, the model includes simulating all necessary properties of X- or Gamma-ray sources, the interaction of photons with material with special attention to scattered radiation, the detection process, and the complete geometrical RT setup handling arbitrary parts or constructions. Depending on the given inspection problem and the influencing factors that should be addressed by the simulation, an appropriate physical model has to be chosen to describe the underlying interaction mechanisms. The simulator aRTist combines analytical and Monte Carlo methods to efficiently model the radiation transport such that transmission as well as scatter techniques can be modelled. In this contribution we Focus on Monte Carlo Simulation of scatter contribution within aRTist. Examples for RT/tomographic applications and back-scatter techniques are presented to demonstrate the usability of the presented simulation tool for a broad range of radiological applications. T2 - 19th Wolrd Conference on Nondestructive Testing CY - Munich, Germany DA - 13.06.2016 KW - Radiography KW - Computed tomography KW - Simulation KW - Monte Carlo methods PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-365856 SN - 978-3-940283-78-8 VL - 158 SP - 1 EP - 9 PB - Deutsche Gesellschaft für zerstörungsfreie Prüfung (DGZfP) CY - Berlin, Germany AN - OPUS4-36585 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaenisch, Gerd-Rüdiger A1 - Kolkoori, Sanjeevareddy A1 - Bellon, Carsten T1 - Quantitative simulation of back scatter X-ray imaging and comparison to experiments N2 - X-ray backscatter imaging is a well established NDT technique to inspect complex objects using only a single-sided access. In difference to conventional transmission X-ray radiography, the X-ray backscatter imaging utilizes the scattered radiation caused by the Compton scattering effect. In order to achieve high backscatter intensities from a test object, it is necessary to optimize the backscatter system parameters namely the angle between source and slit camera, the slit collimator system, the shielding between source and scatter camera, and the type of detector. In addition, the scatter phenomena in to the investigated object need to be understood. In this contribution, we present a Monte Carlo model McRay which considers all relevant single and multiple interactions of photons and electrons. This model can be used to simulate back scatter techniques. It allows not only calculating the scatter image for a given experimental setup but also registering the spectrum of the detected scattered photons. Both aspects are important to understand the imaging process, to interpret the results, and to optimize the backscatter camera investigated here. Additionally experimental results will be presented and compared with simulations. T2 - 19th World Conference on Nondestructive Testing CY - Munich, Germany DA - 13.06.2016 KW - Radiology KW - Back-scatter techniques KW - Simulation KW - Monte Carlo methods KW - Measurements PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-365897 SN - 978-3-940283-78-8 VL - 158 SP - 1 EP - 11 PB - Deutsche Gesellschaft für zerstörungsfreie Prüfung (DGZfP) CY - Berlin, Germany AN - OPUS4-36589 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaenisch, Gerd-Rüdiger A1 - Kolkoori, Sanjeevareddy A1 - Bellon, Carsten T1 - Quantitative simulation of back scatter X-ray imaging and comparison to experiments N2 - X-ray backscatter imaging is a well established NDT technique to inspect complex objects using only a single-sided access. In difference to conventional transmission X-ray radiography, the X-ray backscatter imaging utilizes the scattered radiation caused by the Compton scattering effect. In order to achieve high backscatter intensities from a test object, it is necessary to optimize the backscatter system parameters namely the angle between source and slit camera, the slit collimator system, the shielding between source and scatter camera, and the type of detector. In addition, the scatter phenomena in to the investigated object need to be understood. In this contribution, we present a Monte Carlo model McRay which considers all relevant single and multiple interactions of photons and electrons. This model can be used to simulate back scatter techniques. It allows not only calculating the scatter image for a given experimental setup but also registering the spectrum of the detected scattered photons. Both aspects are important to understand the imaging process, to interpret the results, and to optimize the backscatter camera investigated here. Additionally experimental results will be presented and compared with simulations. T2 - 19th World Conference on Nondestructive Testing CY - Munich, Germany DA - 13.06.2016 KW - Back-scatter techniques KW - Measurements KW - Monte Carlo methods KW - Radiology KW - Simulation PY - 2016 AN - OPUS4-36606 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaenisch, Gerd-Rüdiger A1 - Kolkoori, Sanjeevareddy A1 - Deresch, Andreas T1 - Influence of scattered radiation on the efficiency of dual high-energy X-Ray imaging for material characterization N2 - In this contribution, we discuss the influence of scattered radiation on materials’ effective attenuation coefficients at higher X-ray energies. The selected X-ray spectra for the dual-energy experiments correspond to 3 MV and 7.5 MV acceleration potential of the used betatron. Experiments were performed on a test phantom containing step wedges of different low- and high-Z materials. We evaluated the ratio between low- and high-energy X-ray attenuation coefficients quantitatively based on simulated poly-energetic high-energy X-ray source spectra and the detector sensitivity using the “analytical Radiographic Testing inspection simulation tool” (aRTist) developed at BAM. Furthermore, the influence of scattered radiation is evaluated using an efficient Monte-Carlo simulation. The simulation results are compared quantitatively with experimental investigations. Finally, important applications of the proposed technique in the context of aviation security are discussed. T2 - 19th World Conference on Nondestructive Testing CY - Munich, Germany DA - 13.06.2016 KW - Monte Carlo methods KW - Dual-energy imaging KW - Experiments KW - Simulation PY - 2016 AN - OPUS4-36607 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -