TY - CONF A1 - Jürgens, Maria A1 - Olbricht, Jürgen A1 - Skrotzki, Birgit T1 - Betriebsnahe LCF- und TMF-Untersuchungen an ferritsch-martensitischen Chromstählen N2 - Betriebsnahe LCF- und TMF-Untersuchungen an P92, Vorstellung erster Versuchsergebnisse T2 - DVM Arbeitskreis Bauteilverhalten bei thermomechanischer Ermüdung CY - Berlin, Germany DA - 06.04.2017 KW - P92 KW - TMF KW - LCF PY - 2017 AN - OPUS4-39831 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jürgens, Maria A1 - Skrotzki, Birgit T1 - Thermo-Mechanical Fatigue Behavior of P92 N2 - In the present contribution, the thermo-mechanical fatigue and creep-fatigue behavior of two different 9% Cr steel grades (P91 and P92) was investigated. Standard LCF/TMF-tests as well as near-service loading tests with different hold times have been carried out to study the material behavior of the new loading scenarios. Microstructural investigations help to identify the observed deformation characteristics (like e.g. pronounced softening) and the dominating damage mechanisms under different loads. The test programme is complemented by selected tests on service-aged material which demonstrate possible reactions of older components in existing plants to changes in operation profiles. In a next step, the experimental results will be used for parameter identification of a deformation and lifetime model to predict the material behavior. T2 - LCF08 CY - Dresden, Germany DA - 27.06.2017 KW - Near-service testing KW - Power plant KW - Ferritic-martensitic steels KW - P91 KW - P92 KW - Thermo-Mechanical Fatigue PY - 2017 AN - OPUS4-42267 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jürgens, Maria A1 - Fedelich, Bernard A1 - Olbricht, Jürgen A1 - Skrotzki, Birgit T1 - Thermo-mechanical fatigue behavior of P91/P92 N2 - 9-12% Cr ferritic-martensitic stainless steels are widely used as high temperature construction materials in power plants due to their excellent creep resistance and good oxidation resistance. Creep resistance is considered as the primary parameter in material selection for base-load power plants, but the growing share of renewable energy sources in power generation forces many installations into more "flexible" operation with frequent load reductions and shutdowns. Under cyclic operation of power plants, temperature gradients occur especially in thick-walled components. Locally, these gradients lead to complex time- and temperature-dependent loading scenarios which may result in superimposed creep deformation/damage, creep-fatigue and thermo-mechanical fatigue. The combination of different damage processes may seriously reduce the lifetimes of respective components. A fundamental understanding of the damage evolution in ferritic-martensitic steels under combined static and cyclic loading is therefore required. In the present contribution, the thermo-mechanical fatigue and creep-fatigue behavior of two different 9% Cr steel grades (P91 and P92) was investigated. Standard LCF/TMF-tests as well as near-service loading tests with different hold times have been carried out to study the material behavior of the new loading scenarios. Microstructural investigations help to identify the observed deformation characteristics (like e.g. pronounced softening) and the dominating damage mechanisms under different loads. The test programme is complemented by selected tests on service-aged material which demonstrate possible reactions of older components in existing plants to changes in operation profiles. In a next step, the experimental results will be used for parameter identification of a deformation and lifetime model to predict the material behavior. T2 - LCF08 CY - Dresden, Germany DA - 27.06.2017 KW - Near-service testing KW - Power plant KW - Ferritic-martensitic steels KW - P91 KW - P92 KW - Thermo-Mechanical Fatigue PY - 2017 SN - 978-3-9814516-5-8 VL - 2017 SP - 101 EP - 105 PB - DVM CY - Berlin AN - OPUS4-42268 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jürgens, Maria A1 - Skrotzki, Birgit A1 - Jürgen, Olbricht T1 - Creep fatigue behavior of P91/P92 N2 - 9-12% Cr ferritic-martensitic stainless steels are widely used as high temperature construction materials in power plants due to their excellent creep resistance and good oxidation resistance. Creep resistance is considered as the primary parameter in material selection for base-load power plants, but the growing share of renewable energy sources in power generation forces many installations into more "flexible" operation with frequent load reductions and shutdowns. Under cyclic operation of power plants, temperature gradients occur especially in thick-walled components. Locally, these gradients lead to complex time- and temperature-dependent loading scenarios which may result in superimposed creep deformation/damage, creep-fatigue and thermo-mechanical fatigue. The combination of different damage processes may seriously reduce the lifetimes of respective components. A fundamental understanding of the damage evolution in ferritic-martensitic steels under combined static and cyclic loading is therefore required. In the present contribution, the creep-fatigue behavior of two different 9% Cr steel grades (P91 and P92) was investigated. Standard creep-tests as well as LCF/TMF tests with hold time have been carried out to study the material behavior of the new loading scenarios. Microstructural investigations help to identify the observed deformation characteristics and the dominating damage mechanisms under different loads. The test programme is complemented by cyclic creep-tests (temperature change) and creep-tests under atmospheres. In a next step, the experimental results will be used for parameter identification of a deformation and lifetime model to predict the material behavior. T2 - ECCC 2017 CY - Düsseldorf, Germany DA - 10.09.2017 KW - Near-service testing KW - Power plant KW - Ferritic-martensitic steels KW - P91 KW - P92 KW - Creep-Fatigue PY - 2017 AN - OPUS4-42269 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jürgens, Maria ED - Skrotzki, Birgit ED - Jürgen, Olbricht T1 - Creep fatigue behavior of P91/P92 N2 - 9-12% Cr ferritic-martensitic stainless steels are widely used as high temperature construction materials in power plants due to their excellent creep resistance and good oxidation resistance. Creep resistance is considered as the primary parameter in material selection for base-load power plants, but the growing share of renewable energy sources in power generation forces many installations into more "flexible" operation with frequent load reductions and shutdowns. Under cyclic operation of power plants, temperature gradients occur especially in thick-walled components. Locally, these gradients lead to complex time- and temperature-dependent loading scenarios which may result in superimposed creep deformation/damage, creep-fatigue and thermo-mechanical fatigue. The combination of different damage processes may seriously reduce the lifetimes of respective components. A fundamental understanding of the damage evolution in ferritic-martensitic steels under combined static and cyclic loading is therefore required. In the present contribution, the creep-fatigue behavior of two different 9% Cr steel grades (P91 and P92) was investigated. Standard creep-tests as well as LCF/TMF tests with hold time have been carried out to study the material behavior of the new loading scenarios. Microstructural investigations help to identify the observed deformation characteristics and the dominating damage mechanisms under different loads. The test programme is complemented by cyclic creep-tests (temperature change) and creep-tests under atmospheres. In a next step, the experimental results will be used for parameter identification of a deformation and lifetime model to predict the material behavior. T2 - ECCC 2017 CY - Düsseldorf, Germany DA - 10.09.2017 KW - Near-service testing KW - Power plant KW - Ferritic-martensitic steels KW - P91 KW - P92 KW - Creep-Fatigue PY - 2017 SN - 978-3-514-00832-8 SP - 1 EP - 5 AN - OPUS4-42270 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jürgens, Maria A1 - Skrotzki, Birgit A1 - Olbricht, Jürgen T1 - Ermüdungsverhalten des warmfesten Stahls P92 N2 - Hochwarmfeste ferritisch-martensitische Stähle mit 9-12 Gew.-% Chromgehalt werden wegen ihrer hohen Kriechfestigkeit und ihres gleichzeitig guten Oxidationswiderstands erfolgreich als Konstruktionswerkstoff für Hochtemperaturbauteile in Kraftwerken eingesetzt. Die zunehmend zyklische Fahrweise konventioneller Kraftwerke im lastflexiblen Betrieb führt zu häufigen Last- und Temperaturwechseln, die von den Bauteilen sicher ertragen werden müssen. Schnelle Lastwechsel verursachen vor allem in dickwandigen Bauteilen erhebliche thermische und mechanische Beanspruchungen. Während unter stationären Betriebs¬bedingungen der Lebensdauerverbrauch von der Werkstoffschädigung durch Kriechen dominiert wurde, verstärkt sich im zyklischen Betrieb die Schädigung durch Ermüdungsprozesse. In der hier vorgestellten Arbeit wird am Beispiel des ferritisch-martensitischen Stahls P92 untersucht, welche Auswirkungen zyklische Fahrweisen auf die Schädigungsprozesse und Lebensdauern dieser Stähle haben. Das Versuchsprogramm kombiniert deshalb Standardtests mit betriebsnahen mechanischen Versuchen unter überlagerter Kriech-, Ermüdungs- und Temperaturwechselbeanspruchung. Diese werden im vorliegenden Beitrag anhand erster Versuchsergebnisse vorgestellt. Ziel der Arbeiten ist, die auftretenden mechanischen Effekte darzustellen und die zugrunde liegenden Schadensmechanismen durch umfangreiche mikroanalytische/fraktographische Nachuntersuchungen des Probenmaterials zu identifizieren. T2 - DGM-AK-Sitzung Mechanisches Verhalten bei hoher Temperatur CY - Berlin, Germany DA - 20.09.2017 KW - P92 KW - LCF KW - RF PY - 2017 AN - OPUS4-42272 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -