TY - JOUR A1 - Can, S. Z. A1 - Engin, B. A. A1 - İşleyen, A. A1 - Jotanovic, A. A1 - Acosta, O. A1 - Prina, P. A1 - Schvartz, M. A1 - Savić, M. A1 - Stojanović, M. A1 - Ahumada, D. A. A1 - Abella, J. P. A1 - Näykki, T. A1 - Saro-Aho, T. A1 - Vogl, Jochen A1 - Koenig, Maren A1 - Rienitz, O. A1 - Noordmann, J. A1 - Pape, C. A1 - Towara, J. A1 - Kakoulides, E. A1 - Alexopoulos, C. A1 - Ketrin, R. A1 - Mardika, E. A1 - Komalasari, I. A1 - Elishian, C. A1 - Naujalis, E. A1 - Knašienė, B. A1 - Uribe, C. A1 - Carrasco, E. A1 - Zoń, A. A1 - Warzywoda, B. A1 - Stakheev, A. A1 - Dobrovolskiy, V. A1 - Stolboushkina, T. A1 - Glinkova, A. A1 - Sobina, E. A1 - Tabatchikova, T. A1 - Gažević, L. A1 - Paunovic, M. A1 - Jaćimović, R. A1 - Zuliani, T. A1 - Zambra, R. P. A1 - Napoli, R. T1 - Determination of elements in river water N2 - The need for quality assessment of anthropogenic impact on environmental pollution is increasing due to discharge from various industries, the use of chemicals in agriculture and the consumption of fossil fuels. Diminishing resources such as natural waters used for the cultivation of agricultural products, plant and animal habitats are under severe pollution pressure and are at constant risk. Several parameters, such as Pb, Cd, Ni, Hg were listed by Water Framework Directive in Directive(2008/105/EC) in the priority substances. Cadmium and Hg were identified as priority hazardous substances whereas As is an important contaminant for its potential toxicological and carcinogenic effects. An inter-comparison study is organised in EURAMET TC-MC in order to demonstrate the capability participants for measuring five elements in river water. The participants carried out measurements for analytes: Pb, Cd, Ni and As as mandatory elements, and Se as an optional one. Participants were asked to perform the measurements with respect to the protocol provided. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database https://www.bipm.org/kcdb/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA). KW - Metrology KW - Traceability KW - Toxic elements KW - River water PY - 2023 U6 - https://doi.org/10.1088/0026-1394/60/1A/08001 VL - 60 IS - 1a SP - 1 EP - 40 PB - BIPM & IOP Publishing Ltd AN - OPUS4-56786 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Isleyen, A. A1 - Vogl, Jochen A1 - Scrundric, N. A1 - Jotanovic, A. A1 - Näykki, T. A1 - Horvat, M. A1 - Zon, A. A1 - Bulska, E. A1 - Ochsenkühn-Petropoulou, M. A1 - Can, S.Z. A1 - Bilsel, M. A1 - Hafner, K. A1 - Perkola, N. A1 - Ari, B. A1 - Tunc, M. A1 - Binici, B. T1 - Matrix reference materials for environmental analysis N2 - Reliable analysis of chemical indicators in water, sediment and soil samples for the purpose of environmental pollution assessment poses one of the greatest analytical challenges, having in mind the complexity of sample matrix and low concentrations of pollutants. Organics (pesticides, PAHs, PCBs, etc.) and heavy metals (Hg, Cd, Ni, Pb and As) represent target parameters. Laboratories performing sampling and tests in this field regulated by respective EU directives [1], need strong support in terms of providing them with appropriate matrix CRMs enabling the process of quality control. NMIs and DIs with proven metrological capabilities for the production and certification of such materials are necessary for the provision of quality data. This project is aiming to develop capacity to produce CRMs for environmental analysis by transferring the theoretical and practical know-how between the partners and combining their skills to focus on environmental CRM production in accordance with ISO Guide 34 [2]. Production process includes good manufacturing practices for processing materials, method development and validation for homogeneity, stability and characterisation tests, characterisation of selected analytes together with additional information about matrix constituents, the calculation of individual uncertainties (between units inhomogeneity, long term stability, characterisation) and combination of uncertainties to determine overall uncertainty of the matrix reference materials. Inter laboratory comparison registered as EURAMET project is set as the ultimate project outcome, confirming the partners’ capabilities in applying newly acquired skills. T2 - 9th International Conference on Instrumental Methods of Analysis: Modern Trends and Applications CY - Kalamata, Greece DA - 20.09.2015 KW - PFOS KW - Environment KW - CRM KW - Soil KW - Heavy metal KW - PFOA PY - 2015 UR - http://www.ima2015.teikal.gr/images/IMA-2015_book_of_abstracts.pdf AN - OPUS4-38799 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Isleyen, A. A1 - Vogl, Jochen A1 - Skundric, N. A1 - Jotanovic, A. A1 - Näykki, T. A1 - Perkola, N. A1 - Horvat, M. A1 - Zon, A. A1 - Bulska, E. A1 - Ochsenkühn-Petropoulou, M. A1 - Can, S. Z. A1 - Bilsel, M. A1 - Hafner, K. A1 - Suljagic, S. A1 - Kovacevic, L. A1 - Jacimovic, R. A1 - Gazevic, L. A1 - Ari, B. A1 - Tunc, M. A1 - Binici, B. A1 - Gökcen, T. A1 - Fotis, T. T1 - A Joint Research Project for the Sustainable Production of Certified Matrix Reference Materials for Environmental Analysis N2 - Reliable analysis of chemical indicators in water, sediment and soil samples for the purpose of environmental pollution assessment poses one of the greatest analytical challenges, having in mind the complexity of sample matrix and low concentrations of pollutants. Organics (pesticides, PAHs, PCBs, etc.) and heavy metals (Hg, Cd, Ni, Pb and As) represent target parameters. Laboratories performing sampling and tests in this field regulated by respective EU directives, need strong support in terms of providing them with appropriate matrix CRMs enabling the process of quality control. NMIs and DIs with proven metrological capabilities for the production and certification of such materials are necessary for the provision of quality data. This project is aiming to develop capacity to produce CRMs for environmental analysis by transferring the theoretical and practical know-how between the partners and combining their skills to focus on environmental CRM production in accordance with ISO Guide 34. Production process includes good manufacturing practices for processing materials, method development and validation for homogeneity, stability and characterisation tests, characterisation of selected analytes together with additional information about matrix constituents, the calculation of individual uncertainties (between units inhomogeneity, long term stability, characterisation) and combination of uncertainties to determine overall uncertainty of the matrix reference materials. Inter laboratory comparison registered as EURAMET project is set as the ultimate project outcome, confirming the partners’ capabilities in applying newly acquired skills. T2 - BERM-14 International Symposium on Biological and Environmental Reference Materials CY - National Harbor, Maryland, USA DA - 12.10.2015 KW - Soil KW - Heavy metal KW - Environment KW - CRM KW - PFOA KW - PFOS PY - 2015 AN - OPUS4-38800 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Isleyen, A. A1 - Vogl, Jochen A1 - Skundrić, N. A1 - Jotanović, A. A1 - Näykki, T. A1 - Perkola, N. A1 - Horvat, M. A1 - Zoń, A. A1 - Bulska, E. A1 - Ochsenkühn-Petropoulou, M. A1 - Can, S. Z. A1 - Bilsel, M. A1 - Hafner, K. A1 - Suljagić, S. A1 - Kovačević, L. A1 - Jaćimović, R. A1 - Gažević, L. A1 - Arı, B. A1 - Tunc, M. A1 - Binici, B. A1 - Gökcen, T. A1 - Fotis, T. T1 - A joint research project for the sustainable production of certified matrix reference materials for environmental analysis N2 - This project aims to develop capacity to produce certified reference materials (CRMs) for environmental analysis by transferring know-how between the partners and combining their skills to focus on environmental CRM production. The production process includes good manufacturing practices for processing materials, method development, the validation and application of homogeneity, stability and characterisation tests, the calculation of individual uncertainties (between-unit inhomogeneity, long term stability, characterisation) and combination of uncertainties to determine overall uncertainty of the matrix reference materials. An inter laboratory comparison registered as a EURAMET project is set as the ultimate project outcome, confirming the partners’ capabilities in applying newly acquired skills. T2 - BERM-14 CY - National Harbor, Maryland, USA DA - 11.10.2015 KW - Reference material KW - Priority pollutants KW - Toxic metals KW - PFOS KW - PFOA PY - 2015 AN - OPUS4-45251 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Isleyen, A. A1 - Vogl, Jochen A1 - Skrundric, N. A1 - Jotanovic, A. A1 - Näykki, T. A1 - Horvat, M. A1 - Zoń, A. A1 - Bulska, E. A1 - Ochsenkuhn- Petropoulou, M. A1 - Can, S. Z. A1 - Bilsel, M. A1 - Hafner, K. A1 - Perkola, N. A1 - Ari, B. A1 - Tunç, M. A1 - Binici, B. T1 - Matrix reference materials for environmental analysis N2 - This project aims to develop capacity to produce certified reference materials (CRMs) for environmental analysis by transferring know-how between the partners and combining their skills to focus on environmental CRM production. The production process includes good manufacturing practices for processing materials, method development, the validation and application of homogeneity, stability and characterisation tests, the calculation of individual uncertainties (between-unit inhomogeneity, long term stability, characterisation) and combination of uncertainties to determine overall uncertainty of the matrix reference materials. An inter laboratory comparison registered as a EURAMET project is set as the ultimate project outcome, confirming the partners’ capabilities in applying newly acquired skills. T2 - 9th International Conference on Instrumental Methods of Analysis: Modern Trends and Applications CY - Kalamata, Greece DA - 20.09.2015 KW - Priority substances KW - Toxic metals KW - PFOS KW - PFA PY - 2015 AN - OPUS4-45252 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Isleyen, A. A1 - Vogl, Jochen A1 - Nikolic, D. A1 - Jotanovic, A. A1 - Näykki, T. A1 - Perkola, N. A1 - Horvat, M. A1 - Zon, A. A1 - Bulska, E. A1 - Ochsenkühn-Petropoulou, M. A1 - Can, S. Z. A1 - Jacimovic, R. A1 - Gazevic, L. A1 - Cankur, O. A1 - Ari, B. A1 - Tunc, M. A1 - Binici, B. A1 - Gokcen, T. A1 - Cakilbahce, Z. A1 - Lymperopoulou, V. T1 - Three candidate certified reference materials for environmental analysis N2 - This project aims to develop capacity to produce certified reference materials (CRMs) for environmental analysis by transferring know-how between the partners and combining their skills to focus on environmental CRM production. The production process includes good manufacturing practices for processing materials, method development, the validation and application of homogeneity, stability and characterisation tests, the calculation of individual uncertainties (between-unit inhomogeneity, long term stability, characterisation) and combination of uncertainties to determine overall uncertainty of the matrix reference materials. An inter laboratory comparison registered as a EURAMET project is set as the ultimate project outcome, confirming the partners’ capabilities in applying newly acquired skills. T2 - 10th International Conference on Instrumental Methods of Analysis CY - Heraklion, Greece DA - 17.09.2017 KW - Certified reference materials KW - Toxic metals KW - PFOS KW - PFOA PY - 2017 AN - OPUS4-45253 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Isleyen, A. A1 - Vogl, Jochen A1 - Nikolic, D. A1 - Jotanovic, A. A1 - Näykki, T. A1 - Perkola, N. A1 - Horvat, M. A1 - Zoń, A. A1 - Bulska, E. A1 - Ochsenkuhn-Petropoulou, M. A1 - Can, S. Z. A1 - Bilsel, M. A1 - Hafner, K. A1 - Jacimovic, R. A1 - Gažević, L. T1 - Joint research project for the production of certified matrix reference materials for environmental analysis N2 - Reliable analysis of chemical indicators in water, sediment and soil samples for the purpose of environmental pollution assessment poses one of the greatest analytical challenges, having in mind the complexity of sample matrix and low concentrations of pollutants. Organics (pesticides, PAHs, PFOS, etc.) and heavy metals (Hg, Cd, Ni, Pb and As) represent target parameters. Laboratories performing sampling and tests in this field regulated by respective EU directives, need strong support in order to establish a quality system. It is necessary to provide appropriate calibrators i.e. matrix CRMs relates to the unique sample matrices representing typical samples in the geomorphological and anthropological sense. In addition to that, bearing in mind the complexity and instability of environmental samples, it is very difficult to obtain appropriate referents materials with no local providers. Our project is aiming to develop capacity to produce CRMs for environmental analysis by transferring the theoretical and practical know-how between the partners and combining their skills to focus on environmental CRM production in accordance with ISO Guide 34. Our project will have an impact on environmental monitoring in the partnering countries and on the scientific community, who will use the newly developed reference materials. Furthermore, partners will develop strategies for producing new CRMs either on their own or in cooperation. This will lead to regional CRM producers serving scientific and official laboratories. T2 - 2nd International Congress of Chemists and Chemical Engineers of B&H CY - Sarajevo, Bosnia and Herzegovina DA - 21.10.2016 KW - CRM KW - Environmental analysis KW - CRM producer KW - Quality system PY - 2016 AN - OPUS4-45257 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Isleyen, A. A1 - Vogl, Jochen A1 - Nikolic, D. A1 - Jotanovic, A. A1 - Näykki, T. A1 - Perkola, N. A1 - Horvat, M. A1 - Zon, A. A1 - Bulska, E. A1 - Ochsenkühn-Petropoulou, M. A1 - Zan, S. Z. A1 - Bilsel, M. A1 - Hafner, K. A1 - Jacimovic, R. A1 - Gazevic, L. T1 - Matrix reference materials for environmental analysis N2 - Reliable analysis of chemical indicators in water, sediment and soil samples for the purpose of environmental pollution assessment poses one of the greatest analytical challenges, having in mind the complexity of sample matrix and low concentrations of pollutants. Organics (pesticides, PAHs, PFOS, etc.) and heavy metals (Hg, Cd, Ni, Pb and As) represent target parameters. Laboratories performing sampling and tests in this field regulated by respective EU directives, need strong support in order to establish a quality system. It is necessary to provide appropriate calibrators i.e. matrix CRMs relates to the unique sample matrices representing typical samples in the geomorphological and anthropological sense. In addition to that, bearing in mind the complexity and instability of environmental samples, it is very difficult to obtain appropriate referents materials with no local providers. Our project is aiming to develop capacity to produce CRMs for environmental analysis by transferring the theoretical and practical know-how between the partners and combining their skills to focus on environmental CRM production in accordance with ISO Guide 34. Our project will have an impact on environmental monitoring in the partnering countries and on the scientific community, who will use the newly developed reference materials. Furthermore, partners will develop strategies for producing new CRMs either on their own or in cooperation. This will lead to regional CRM producers serving scientific and official laboratories. T2 - 2nd International Congress of Chemists and Chemical Engineers of Bosnia and Herzegovina CY - Sarajevo, Bosnia and Herzegovina DA - 21.10.2016 KW - CRM KW - Environmental analysis KW - Quality system PY - 2016 AN - OPUS4-40028 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stratulat, C. A1 - Ginghina, R. E. A1 - Bratu, A. E. A1 - Isleyen, A. A1 - Tunc, M. A1 - Hafner-Vuk, K. A1 - Frey, A. M. A1 - Kjeldsen, H. A1 - Vogl, Jochen T1 - Development- and Validation-Improved Metrological Methods for the Determination of Inorganic Impurities and Ash Content from Biofuels N2 - In this study, five laboratories, namely, BRML (Romania), TUBITAK UME (Turkey), IMBIH (Bosnia and Herzegovina), BAM (Germany), and DTI (Denmark), developed and validated analytical procedures by ICP-MS, ICP-OES, MWP-AES, WD-XRF, and ID-MS for the determination of inorganic impurities in solid and liquid biofuels, established the budget of uncertainties, and developed the method for determining the amount of ash in the measurement range 0–1.2% with absolute repeatability less than 0.1% and absolute reproducibility of 0.2% (according to EN ISO 18122). In order to create homogeneous certified reference materials, improved methodologies for the measurement and characterization of solid and liquid biofuels were developed. Thus, information regarding the precision, accuracy, and bias of the method, and identifying the factors that intervened in the measurement of uncertainty were experimentally determined, supplementing the information from the existing standards in the field. KW - Development KW - Validate method KW - Biodiesel KW - ICP-MS KW - ICP-OES KW - MW-AES KW - WD-XRF KW - ID-MS KW - Inorganic impurities KW - Ash content KW - Wood chips PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-578743 VL - 16 IS - 13 SP - 1 EP - 14 PB - MDPI AN - OPUS4-57874 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bilsel, M. A1 - Gökçen, T. A1 - Binici, B. A1 - Isleyen, A. A1 - Piechotta, Christian A1 - Kar-wai, A. A1 - Krylov, A. A1 - Miheeva, A. A1 - Beliakov, M. A1 - Palagina, M. A1 - chenko, Irina Tka A1 - Perkola, N. A1 - Lewin, M. A1 - Hua, T. T1 - High polarity analyte(s) in aqueous media: determination of L-PFOA and L-PFOS in ground water N2 - The CCQM-K156 comparison was coordinated by TUBITAK UME on behalf of the Organic Analysis Working Group (OAWG) of the Comité Consultatif pour la Quantité de Matière (CCQM) for National Measurement Institutes (NMIs) and Designated Institutes (DIs) which provide measurement services in organic analysis under the 'Comité International des Poids et Mesures' Mutual Recognition Arrangement (CIPM MRA). Perfluoro alkyl substances (PFAS) such as PFOS and PFOA have been used in numerous industrial applications and products. Because of their high stability and resistance to biodegradation, atmospheric photooxidation, direct photolysis and hydrolysis, they are extremely persistent in the environment. The European Union (EU) Water Framework Directive lists PFOS as a priority hazardous substance that poses a significant risk to the aquatic environment. The use of PFOS-containing Aqueous Film-Forming Foams (AFFFs) has been banned since June 2011 in the EU. As relatively water-soluble, effectively non-degradable compounds, PFOS and PFOA migrate to ground water. They are not removed in the conventional drinking water treatment, and therefore cause health risks in polluted areas. The EU Drinking Water Directive and the European Commission has proposed a limit value of 100 ng/L for the sum of 20 PFAS, including PFOS and PFOA. This study provides the means for assessing measurement capabilities for determination of high polarity measurands in a procedure that requires extraction, clean-up, analytical separation and detection. Successful participation in CCQM-K156 demonstrates measurement capabilities in determining mass fraction of organic compounds, with a molecular mass of 200 g/mol to 700 g/mol, having high polarity pKow -2, in a mass fraction range from 0.5 ng/kg to 500 ng/kg in aqueous media. Nine NMIs and DIs participated in the CCQM-K156 key comparison. Seven institutes reported their results. SPE was applied in the sample pre-treatment and LC-MS was applied for detection. All participating laboratories applied isotope dilution mass spectrometry (IDMS) techniques for quantification. Participants established the metrological traceability of their results using certified reference materials (CRMs) from NMIs with stated traceability; where commercially available high purity materials were used the purity was determined in-house. The CCQM-K156 results for L-PFOA and L-PFOS range from 2.75 ng/kg to 5.50 ng/kg with a % RSD of 19.5 % for L-PFOA and from 2.04 ng/kg to 4.45 ng/kg with a % RSD of 21.3 % for L-PFOS. The KCRV was assigned using a Hierarchical Bayesian Random Effects Model (HB REM) estimator from the values reported by six of the participants. One participant result of L-PFOS and one result of L-PFOA were excluded from the KCRV for technical reasons. The KCRV was 4.9 ng/kg ± 0.4 ng/kg for L-PFOA and 3.8 ng/kg ± 0.4 ng/kg for L-PFOS. The six institutes that were included in the assignment of consensus KCRV all agreed within their standard uncertainties. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database https://www.bipm.org/kcdb/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA). KW - PFAS KW - Surface water KW - ILC KW - CCQM PY - 2022 U6 - https://doi.org/10.1088/0026-1394/59/1A/08016 VL - 59 IS - 1A SP - 1 EP - 3 PB - IOP Publishing AN - OPUS4-58941 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -