TY - JOUR A1 - Woydt, Mathias A1 - Mohrbacher, H. A1 - Vleugels, J. A1 - Huang, S. T1 - Niobium carbide for wear protection - tailoring its properties by processing and stoichiometry N2 - Niobium carbide is a hardly explored carbide but its functional profile shows a high potential for wear protection and tribological applications, which are currently dominated by tungsten carbide. Surprisingly little information is available on niobium carbide (NbC). Niobium carbide can be either synthesized by carbothermal conversion of Nb2O5 or be metallurgically grown and leached out. Furthermore, NbC hardmetal grades can be bonded by all known metallic binders and processed and sintered in exactly the same way as WC-based hardmetals. Niobium is today largely available. NbC can be efficiently produced, provides comparably low friction in many relevant tribo-contacts and displays low wear. NbC and Nb2O5 have so far no REACH classification related to human toxicology and are not listed as substances of very high concern contrary to WO3 and Co3O4. This contribution demonstrates the key characteristics of NbC and discusses its sustainability and reliable value chain. KW - niobium carbide KW - wear KW - machining PY - 2016 U6 - https://doi.org/10.1016/j.mprp.2015.12.010 SN - 0026-0657 VL - 71 IS - 4 SP - 265 EP - 272 PB - Elsevier Ltd. AN - OPUS4-37150 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Huang, S.G. A1 - Vanmeensel, K. A1 - Mohrbacher, H. A1 - Woydt, Mathias A1 - Vleugels, J. T1 - Microstructure and mechanical porperties of NbC-matrix hardmetals with secondary carbide addition and different metal binders N2 - NbC has a relatively high hardness (19.6 GPa) and melting temperature (3600 °C) and is usually applied as a grain growth inhibitor in WC–Co hardmetals. The current study reports on the influence of the sintering technology and overall chemical composition on the microstructure and mechanical properties of NbC-based hardmetals, using Co as a binder. The partial replacement of NbC by 5 wt.% WC, Mo2C, VC or TiC allows one to significantly improve the hardness and toughness of the NbC–Co materials. The influence of different binders, i.e., Co, 316L stainless steel and Fe3Al on the microstructure and mechanical properties of NbC-based hardmetals was also investigated. The powder mixtures were sintered in the solid state by PECS and liquid state by conventional vacuum sintering. Detailed microstructural analysis was conducted by EPMA elemental mapping and WDS point analysis. Mechanical properties, including Vickers hardness and indentation toughness were assessed. KW - Niobium carbide KW - Sintering KW - Grain growth KW - Microstructure KW - Mechanical properties PY - 2015 U6 - https://doi.org/10.1016/j.ijrmhm.2014.10.014 SN - 0263-4368 SN - 0958-0611 VL - 48 SP - 418 EP - 426 PB - Elsevier AN - OPUS4-31974 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Huang, S. G. A1 - Vleugels, J. A1 - Mohrbacher, H. A1 - Woydt, Mathias T1 - Influence of VC and Mo2C on the microstructure and mechanical properties of Ni bonded NbC-cermets N2 - The current study reports on the effect of VC and Mo2C carbides on the microstructure and mechanical properties of Ni bonded NbC cermets. T2 - World PM2016 CY - Hamburg, Germany DA - 09.10.2016 KW - Niobium carbide KW - NbC KW - Liquid phase sintering (LPS) KW - Hard materials PY - 2016 SN - ISBN 978-1-899072-47-7 SP - 1 EP - 7 AN - OPUS4-37891 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Woydt, Mathias A1 - Mohrbacher, H. A1 - Vleugels, J. A1 - Huang, S. T1 - Substitution of tungsten carbide by niobium carbide as cutting materials and for wear protection N2 - Im binären System NbC-C existieren verschiedene Phasen im Homogenitätsbereich NbCₓ, mit 0,75 ≤ x ≤ 1,0, wie NbC, Nb₆C₅ und Nb₄ C₃ , die ein breites Prozessfenster beim Sintern und in der Werkstoffentwicklung ermöglichen. Die Mikrohärte, die Warmhärte, der Verschleißwiderstand, das Elastizitätsmodul und die Zähigkeit von Hartmetallen hängen vom C/Nb-Verhältnis ab, wie auch von der Zugabe von Sekundärcarbiden. N2 - Several phases, like Nb₄ C₃ , Nb₆C₅ and other short and long range ordered phases occur in the region of homogeneity of NbCₓ (0.75 ≤ x ≤ 1.0) in the binary phase diagram. Properties, like micro-hardness, hot hardness, sliding wear resistance, elastic modulus and toughness can be tailored by the C/Nb ratio, the addition of secondary carbides and the type of binder. Supporting results from different grades with varying C/Nb ratio or binder types were illuminated. Thus, the NbC system offers to producers a wider process window, than WC. The impact of these tailored properties on sliding wear and cutting performance was illuminated by tribological and machining results. Niobium is today largely available. NbC can be synthesized by carbothermal conversion of Nb₂O₅ or be metallurgically grown and leached out, provides comparably low friction in many relevant tribo-contacts and displays low wear. NbC and Nb₂O₅ have so far no REACH classification related to human toxicology and are not listed as substances of very high concern contrary to WO₃ and Co₃ O₄ . T2 - 57. Tribologie-Fachtagung CY - Göttingen, Germany DA - 26.09.2016 KW - cutting materials KW - niobium carbide KW - wear protection PY - 2016 SN - 978-3-9817451-1-5 SP - 65/1 EP - 65/14 AN - OPUS4-37833 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Huang, S. A1 - Woydt, Mathias A1 - Vleugels, J. A1 - Mohrbacher, H. T1 - Development of NbC-based hardmetals: Influence of secondary carbide addition and metal binder T2 - Int. Symp. on Wear Resistant Alloys for the Mining and Processing Industry CY - Campinas, Sao Paulo, Brazil DA - 2015-05-04 PY - 2015 AN - OPUS4-33208 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Woydt, Mathias A1 - Huang, S. A1 - Vleugels, J. A1 - Mohrbacher, H. A1 - Cannizza, E. T1 - Potentials of niobium carbide (NbC) as cutting tools and for wear protection N2 - Research and development of WC grades is 90 years ahead of niobium carbide-based hard materials, which showed already as light-weight and unexplored material a very high potential for many technical applications, especially for wear protection and machining. NbC evoluted recently from lab scale to pilot scale, especially in areas where established WC-based materials are causing economic, environmental or technical concerns. Benchmark trials of NbC-based hard metals indicated already a favorable performance in machining of steel components. KW - Niobium carbide KW - Friction KW - Wear KW - NbC KW - Hard metals KW - Machining KW - Nickel PY - 2018 U6 - https://doi.org/10.1016/j.ijrmhm.2018.01.009 SN - 0263-4368 VL - 72 SP - 380 EP - 387 PB - Elsevier Ltd. AN - OPUS4-44166 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Huang, S. G. A1 - Vleugels, J. A1 - Mohrbacher, H. A1 - Woydt, Mathias T1 - NbC-based cermets: influence of secondary carbide addition and metal binder N2 - Full densification of Fe, Co and Ni bonded NbC based cermet’s was achieved by pressure less liquid phase sintering in vacuum for one hour at 1420°C. The hardness and toughness of the NbC matrix cermet’s can be mainly tailored by the binder composition and secondary carbide additions. Ni binder based NbC cermet’s allow the combination of high hardness and improved toughness. The addition of lesser amounts of VC/Cr3C2 in a NbC partially substituted WC-Co cemented carbide increased significantly the hardness in combination with a moderate fracture toughness. T2 - International Symposium on Wear Resistant Alloys for the Mining and Processing Industry CY - Sao Paulo, Brazil DA - 04.05.2015 KW - Niobium carbide KW - Hardmetal KW - Cemented carbide KW - Sintering KW - Grain growth KW - Microstructure KW - Hardness KW - Fracture toughness PY - 2018 SN - 978-0-692-05382-9 SP - 521 EP - 534 AN - OPUS4-44206 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Huang, S. G. A1 - Vleugels, J. A1 - Mohrbacher, H. A1 - Woydt, Mathias T1 - Effect of Ti(C0.7N0.3) content on the microstructure and mechanical properties of Ni bonded NbC-Ti(C0.7N0.3) based cermets N2 - In the present work it was shown that the addition of VC or a combination of VC + Ti(C0.7N0.3) was efficient in reducing the NbC grain growth during liquid phase sintering, when compared to NbC-Ni equivalents. A finest NbC grain size of 1.48 µm was obtained in the NbC-15 Ti(C0.7N0.3)-10 Ni-7.5 VC cermet, exhibiting a hardness of 1486 +/- 7 kg/mm2 and a fracture toughness of 8.7 +/- 0.1 MPa m 1/2. KW - Cermet KW - Niobium carbide KW - Carbonitride KW - Sintering KW - Mechanical properties PY - 2018 U6 - https://doi.org/10.4028/www.scientific.net/SSP.274.43 SN - 1662-9779 VL - 274 SP - 43 EP - 52 PB - Trans Tech Publ. CY - Uetikon AN - OPUS4-44962 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Huang, S. A1 - De Beats, P. A1 - Sukumaran, J. A1 - Mohrbacher, H. A1 - Woydt, Mathias A1 - Vleugels, J. T1 - Effect of carbon content on the microstructure and mechanical properties of NbC-Ni based cermets N2 - The aim of this work was to correlate the overall carbon contents in NbC-Ni, NbC-Ni-VC and NbC-Ni-Mo starting powders with the resulting microstructure, hardness, and fracture toughness of Ni-bonded NbC cermets. KW - Niobium carbide KW - Cermet KW - Hardmetal KW - Liquid phase sintering KW - Carbon KW - Hardness PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-444608 SN - 2075-4701 VL - 8 IS - 3 SP - Article 178, 1 EP - 13 PB - MDPI AN - OPUS4-44460 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Huang, S. G. A1 - Vleugels, J. A1 - Mohrbacher, H. A1 - Woydt, Mathias T1 - Microstructure and mechanical properties of NbC matrix cermets using Ni containing metal binder N2 - The current study reports on the effect of the addition of Al metal and secondary refractory carbides on the microstructure and mechanical properties of Ni bonded NbC matrix cermets. KW - NbC KW - Niobium carbide KW - Hardness KW - Hard materials PY - 2016 U6 - https://doi.org/10.1016/j.mprp.2016.05.009 VL - 71 IS - 5 SP - 349 EP - 355 PB - Elsevier Ltd. AN - OPUS4-44623 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Huang, S. G. A1 - Vleugels, J. A1 - Mohrbacher, H. A1 - Woydt, Mathias T1 - Densification and tribological profile of niobium oxide N2 - The origin of the intrinsic wear resistance of NbC-based materials is investigated through an assessment of the tribological performance of fully dense, crack-free spark plasma sintered Nb2O5 (here as a reduced polymorph: monoclinic Nb12O29 or NbO2.416). The most likely wear mechanism on NbC is the tribo-oxidation to Nb2O5. The unlubricated (dry) friction and wear behavior of alumina (99.7%) mated against rotating disks of crack-free niobium(V)oxide (Nb2O5) under unidirectional sliding (0.03–10m/s; 22°C and 400°C) and oscillation (f=20 Hz, dx=200 mm, 2/50/98% rel. humidity, n=105/106 cycles) will be presented. The microstructure and mechanical properties of the crack-free Nb2O5 are assessed. The tribological data obtained are benchmarked with different NbC grades, ceramics, cermets and thermally sprayed coatings. KW - Friction KW - Wear KW - Nb2O5 KW - Nb12O29 KW - Niobium oxide KW - Strength KW - Modulus KW - High temperatures PY - 2016 U6 - https://doi.org/10.1016/j.wear.2016.02.003 SN - 0043-1648 VL - 352-353 SP - 65 EP - 71 PB - Elsevier B.V. AN - OPUS4-35805 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Woydt, Mathias A1 - Huang, S. A1 - Cannizza, E. A1 - Vleugels, J. A1 - Mohrbacher, H. T1 - Niobium carbide for machining and wear protection - Evolution of properties N2 - The sales of niobium carbide (NbC) have grown in the last years, but NbC is still a hidden carbide and mainly used as grain growth inhibitor in hard metals. In the present work it was shown that the progress in the key properties, like HV30, KIC and strength, followed by machining and tribological results of the respective NbC grades. KW - Niobium carbide KW - Hard metals KW - Tribology PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-485507 SN - 0026-0657 VL - 74 IS - 2 SP - 82 EP - 89 PB - Elsevier Ltd. AN - OPUS4-48550 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Woydt, Mathias A1 - Mohrbacher, H. A1 - Vleugels, J. A1 - Huang, S. T1 - Potentials of niobium carbide (NBC) as cutting tools and for wear protection N2 - Niobium is today largely available. NbC displayed lower dry sliding friction over WC grades. The softer Ni- and NiMo-bonded NbC1.0-grades have a higer abrasive wear resistance (ASTM G65), even with lower toughnesses, than the tougher WC-Co grades and harder NbC-Co grades. T2 - 41st International Conference and Exposition on Advanced Ceramics and Composites CY - Daytona Beach, FL, USA DA - 22.01.2017 KW - Niobium Carbide (NbC) KW - Cutting tool KW - Hardness KW - Friction PY - 2017 VL - 38 SP - 1 EP - 13 AN - OPUS4-43430 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Huang, S. G. A1 - Vleugels, J. A1 - Mohrbacher, H. A1 - Woydt, Mathias T1 - NbC grain growth control and mechanical properties of Ni bonded NbC cermets prepared by vacuum liquid phase sintering N2 - The current study reports on the effect of the sintering temperature and secondary carbide (VC, Mo2C and TiC) and Mo additions on the NbC grain growth, microstructure evolution as well as concomitant Vickers hardness (HV30) and fracture toughness of Ni-bonded NbC cermets. KW - Cermet KW - Niobium carbide KW - Sintering KW - Microstructure KW - Mechanical properties PY - 2018 U6 - https://doi.org/10.1016/j.ijrmhm.2017.12.013 SN - 0263-4368 VL - 72 SP - 63 EP - 70 PB - Elsevier Science CY - Amsterdam AN - OPUS4-43582 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Huang, S. G. A1 - Vleugels, J. A1 - Mohrbacher, H. A1 - Woydt, Mathias T1 - Microstructure and tribological performance of NbC-Ni cermets modified by VC and Mo2C N2 - The current study reports on the influence of the Addition of 5–15 vol% VC or/and Mo2C carbide on the microstructure and mechanical properties of nickel bonded NbC cermets, which are compared to cobalt bonded NbC cermets. The NbC, Ni and secondary carbides powder mixtures were liquid phase sintered for 1 h at 1420 °C in vacuum. The fully densified cermets are composed of a cubic NbC grains matrix and an evenly distributed fcc Ni binder. NbC grain growth was significantly inhibited and a homogeneous NbC grain size distribution was obtained in the cermets with VC/Mo2C additions. The mechanical properties of the NbC-Ni matrix cermets are strongly dependent on the carbide and Ni binder content and are directly compared to their NbC-Co equivalents. The liquid phase sintered NbC-12 vol% Ni cermet had a modest Vickers hardness (HV30) of 1077 ± 22 kg/mm2 and an indentation toughness of 9.1 ± 0.5 MPa·m1/2. With the addition of 10–15 vol% VC, the hardness increased to 1359 ± 15 kg/mm2, whereas the toughness increased to 11.3 ± 0.1 MPa·m1/2. Addition of 5 and 10 vol% Mo2C into a NbC-12 vol% Ni mixtures generated the same values in HV30 and KIC when compared to VC additions. A maximum flexural strength of 1899 ± 77 MPa was obtained in the cermet with 20 vol% Ni binder and 4 vol% VC+4 vol% Mo2C addition, exhibiting a high fracture toughness of 15.0 ± 0.5 MPa·m1/2, but associated with a loss in hardness due to the high Ni content. The dry sliding wear behaviour was established at room temperature and 400 °C from 0.1 to 10 m/s. KW - Cermet KW - Liquid phase sintering KW - Grain growth KW - Wear KW - Niobium carbide PY - 2017 U6 - https://doi.org/10.1016/j.ijrmhm.2017.03.012 SN - 0263-4368 VL - 66 SP - 188 EP - 197 AN - OPUS4-40505 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Deng, C. A1 - Yin, Huajie A1 - Li, R.-M. A1 - Huang, S.-C. A1 - Schartel, Bernhard A1 - Wang, Y.-Z. T1 - Modes of action of a mono-component intumescent flame retardant MAPP in polyethylene-octene elastomer N2 - A mono-component intumescent flame retardant named ethylenediamine-modified ammonium polyphosphate (MAPP) is used in polyethylene-octene elastomer (POE). Insight into the flame-retardant mechanisms of the MAPP is provided from a new perspective. The fire performance of POE/MAPP composites is investigated by oxygen index (OI) and vertical burning (UL-94) tests. POE Composite containing 35 wt% MAPP achieves a V-0 rating, and its OI is 29.3 vol%. The thermogravimetric Analysis (TGA) and Fourier transform infrared spectra (FTIR) confirm that the incorporation of ethylenediamine changes the thermal decomposition of APP, mainly resulting in the formation of char layer with a thermally stable structure. Cone calorimeter analysis revealed the flame-retardant modes of action of MAPP in POE under forced-flaming conditions. Quantitative analysis illustrates that both the residue due to charring and the fuel dilution/flame Inhibition resulting from the release of incombustible products/ phosphorus species decrease the total heat release (fire load) by 20e28%. The residue increases linearly with increasing MAPP content, whereas the reduction in effective heat of combustion levels off. Moreover, the flame-retardant effect resulting from the protective properties of the char is discovered to be the dominant mode of action (up to 85% reduction) with respect to the peak heat release rate, leading to the excellent flame retardancy of POE/MAPP. KW - Ammonium polyphosphate KW - Flame retardant KW - Carbonization KW - Elastomer PY - 2017 U6 - https://doi.org/10.1016/j.polymdegradstab.2017.03.006 SN - 0141-3910 SN - 1873-2321 VL - 138 SP - 142 EP - 150 PB - Elsevier AN - OPUS4-39901 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Huang, S. G. A1 - Vleugels, J. A1 - Mohrbacher, H. A1 - Woydt, Mathias T1 - Effect of carbon content on the microstructure and mechanical properties of NbC-Ni based cermets N2 - The aim of this work was to correlate the carbon content in NbC-Ni starting powders with the resulting microstructure, hardness and fracture toughness of Ni-bonded NbC cermets. T2 - 19. Plansee Seminar CY - Reutte, Austria DA - 29.05.2017 KW - Cermet KW - Liquid phase sintering KW - Microstructure KW - Hardness KW - Carbon PY - 2017 AN - OPUS4-40647 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Woydt, Mathias A1 - Mohrbacher, H. A1 - Vleugels, J. A1 - Huang, S. T1 - Status of nickel bonded niobium carbide (NbC) as a substitute for cobalt-bonded tungsten carbide (WC) as cutting tools and for wear protection N2 - Niobium is today largely available. The initial NbC grade was substoichiometric, SPS sintered and cobalt bonded (NbC0.88-12Co SPS). The NiMo-bonded stoichiometric NbC1.0 grades enable the subtituion of cobalt by nickel, SPS by conventional sintering and NbC0.88 by NbC1.0 in view of functional properties. Nickel bonded NbC grades have improved toughnesses versus cobalt bonded NbC grades, but lose hardness. NiMo and NiMo2C bonded NbC1.0 grades compensated the loss in hardness while keeping the toughness. T2 - POWDERMET 2017 CY - Las Vegas, USA DA - 13.06.2017 KW - Niobium carbide (NbC) KW - Cutting tools KW - Wear PY - 2017 SP - 721 EP - 734 PB - Metal Powder Industries Federation AN - OPUS4-40671 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Huang, S. G. A1 - Vleugels, J. A1 - Mohrbacher, H. A1 - Woydt, Mathias T1 - NbC grain growth control and mechanical properties of Ni bonded NbC cermets prepared by vacuum liquid phase sintering N2 - The current study reports on the effect of the sintering temperature and secondary carbide (VC, Mo2C and TiC) additions on the microstructure and concommitant Vickers hardness (HV30) and fracture toughness of Ni-bonded NbC cermets. All cermets were prepared by pressureless sintering in vacuum. Detailed microstructural investigation was performed by electron probe microanalysis (EPMA) and X-ray diffraction (XRD) analysis. Sintering results indicated that both the sintering temperature and secondary carbide additions had a significant effect on the properties of NbC-Ni cermets. Nickel pools and residual pores were observed in the cermets sintered at temperatures ≤ 1340 °C. Increasing of the sintering temperature up to 1420 or 1480 °C resulted in fully densified NbC-Ni based cermets composed of homogeneous contrast cubic NbC grains for the single carbide (VC or Mo2C) modyfied system, whereas core-rim structured NbC grains were observed with the additon of TiC + VC or TiC+Mo2C. The secondary carbide doped cermets with 5–10 vol.% VC/Mo2C and 10 vol.% TiC showed a significantly improved hardness and fracture toughness, as compared to the plain NbC-Ni cermets. T2 - 19. Plansee Seminar CY - Reutte, Austria DA - 29.05.2017 KW - Cermet KW - Hard materials KW - Sintering KW - Microstructure KW - Core-rim KW - Mechanical properties PY - 2017 SP - HM 13/1 EP - HM 13/11 AN - OPUS4-40592 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Woydt, Mathias A1 - Mohrbacher, H. A1 - Vleugels, J. A1 - Huang, S. T1 - Potentials of niobium carbide (NbC) as cutting tools and for wear protection N2 - The tool lifes of uncoated NiMo and NiMo2C-bonded stoichiometric NbC1.0 grades under dry turning 42CrMo4 and C45E were between +30 % to + 100 % higher and up compared to WC-6Co (fine grain). Niobium is today largely available. NbC grades displayed lower dry sliding friction over WC grades. T2 - 19. Plansee Seminar CY - Reutte, Austria DA - 29.05.2017 KW - Niobium carbide KW - Friction KW - Wear KW - NbC KW - Hard metal KW - Machining KW - Nickel PY - 2017 SP - HM 102/1 EP - HM 102/16 AN - OPUS4-40593 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Huang, S. G. A1 - Vleugels, J. A1 - Mohrbacher, H. A1 - Woydt, Mathias T1 - Effect of carbon content on the microstructure and mechanical properties of NbC-Ni based cermets N2 - The aim of this work was to correlate the carbon content in NbC-Ni starting powders with the resulting microstructure, hardness and fracture toughness of Ni-bonded NbC cermets. T2 - 19. Plansee Seminar CY - Reutte, Austria DA - 29.05.2017 KW - Cermet KW - Liquid phase sintering KW - Microstructure KW - Hardness KW - Carbon PY - 2017 SP - HM 109/1 EP - HM 109/11 AN - OPUS4-40595 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Huang, S. A1 - Vleugels, J. A1 - Cannizza, E. A1 - Woydt, Mathias A1 - Liu, Z. A1 - Mohrbacher, H. T1 - Niobium carbide based cermets with secondary carbide and carbonitride addition N2 - In this study, the influence of Ni binder content and carbide/carbonitride additions on the microstructure and mechanical properties of NbC-Ni matrix cermets were investigated. T2 - WORLDPM2018 CY - Beijing, China DA - 16.09.2018 KW - Cermet KW - Niobium carbide KW - Carbonitride KW - Sintering KW - Mechanical properties PY - 2018 SP - Part 5, 801 EP - 809 AN - OPUS4-46201 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Woydt, Mathias A1 - Huang, S. A1 - Vleugels, J. A1 - Mohrbacher, H. A1 - Cannizza, E. T1 - Tailoring the functional profile of niobium carbide (NbC) as cutting tool materials and for wear protection N2 - In the present work it was shown that the properties of NbCx, like micro-hardness, hot-hardness, sliding wear resistance, elastic modulus and toughness can be tailored by the C/Nb ratio, the addition of secondary carbides and the type of binder. T2 - WORLDPM2018 CY - Beijing, China DA - 16.09.2018 KW - Niobium carbide KW - Properties KW - Wear KW - Machining PY - 2018 SP - Part 5, 785 EP - 795 AN - OPUS4-46204 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -