TY - JOUR A1 - Duewer, D. L. A1 - Murray, J. A. A1 - Wood, L. J. A1 - Wise, S. A. A1 - Hein, Sebastian A1 - Koch, Matthias A1 - Philipp, Rosemarie A1 - Werneburg, Martina A1 - Hackenberg, R. A1 - Polzer, J. A1 - Avila, M. A. A1 - Serrano, V. A1 - Kakoulides, E. A1 - Alexopoulos, C. A1 - Giannikopoulou, P. A1 - Gui, E. M. A1 - Lu, T. A1 - Teo, T. L. A1 - Hua, T. A1 - Dazhou, C. A1 - Chunxin, L. A1 - Changjun, Y. A1 - Hongmei, L. A1 - Nammoonnoy, J. A1 - Sander, L. C. A1 - Lippa, K. A1 - Quinn, L. A1 - Swiegelaar, C. A1 - Fernandes-Whaley, M. A1 - Gören, A. C. A1 - Gökcen, T. T1 - CCQM-K95.1 Low-polarity analytes in a botanical matrix: Polycyclic aromatic hydrocarbons (PAHs) in tea JF - Metrologia N2 - Extraction, chromatographic separation, and quantification of low-concentration organic compounds in complex matrices are core challenges for reference material producers and providers of calibration services. Evidence of successful participation in formal, relevant international comparisons is needed to document measurement capability claims made by national metrology institutes (NMIs) and designated institutes (DIs). To enable NMIs and DIs to update or establish their claims, in 2014 the Organic Analysis Working Group (OAWG) initiated CCQM-K95.1 "Low-Polarity Analytes in a Botanical Matrix: Polycyclic Aromatic Hydrocarbons (PAHs) in Tea". This was a follow-on comparison from CCQM-K95 which was completed in 2014. The polycyclic aromatic hydrocarbons (PAHs) benz[a]anthracene (BaA) and benzo[a]pyrene (BaP) are considered priority pollutants by U.S. Environmental Protection Agency and are regulated contaminants in food, pose chromatographic separation challenges, and for which exist well-characterized measurement procedures and standard materials. BaA and BaP in a smoked tea were therefore selected as representative target measurands for CCQM-K95.1. Ten NMIs participated in CCQM-K95.1. The consensus summary mass fractions for the two PAHs are in the range of (50 to 70) ng/g with relative standard deviations of (6 to 10) %. Successful participation in CCQM K95.1 demonstrates the following measurement capabilities in determining mass fraction of organic compounds, with molar mass of 100 g/mol to 500 g/mol and having polarity pKow −2, in a botanical matrix ranging in mass fraction from 10 ng/g to 1000 ng/g: (1) value assignment of primary reference standards (if in-house purity assessment carried out), (2) value assignment of single and/or multi-component organic solutions, (3) extraction of analytes of interest from the matrix, (4) cleanup and separation of analytes of interest from interfering matrix or extract components, and (5) separation and quantification using gas chromatography or liquid chromatography. KW - Benz[a]anthracene (BaA) KW - Benzo[a]pyrene (BaP) KW - Gas chromatography (GC) KW - Isotope dilution (ID) KW - Liquid chromatography (LC) KW - Mass spectrometry (MS) KW - Polycyclic aromatic hydrocarbon (PAH) KW - Yerba mate tea PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-471430 DO - https://doi.org/10.1088/0026-1394/56/1A/08002 SN - 0026-1394 SN - 1681-7575 VL - 56 IS - 1 A SP - 08002, 1 EP - 89 PB - IOP Science AN - OPUS4-47143 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Duewer, D. L. A1 - Sander, L. C. A1 - Wise, S. A. A1 - Philipp, Rosemarie A1 - Hein, Sebastian A1 - Hackenberg, R. A1 - Polzer, J. A1 - Avila, M. A. A1 - Serrano, V. A1 - Kakoulides, E. A1 - Alexopoulos, C. A1 - Giannikopoulou, P. A1 - Chan, P. A1 - Lee, H. A1 - Tang, H. A1 - Tang, P. A1 - Yip, Y. A1 - Lu, T. A1 - Cheow, P. S. A1 - Teo, T. L. A1 - Sega, M. A1 - Rolle, F. A1 - Baek, S. A1 - Kim, B. A1 - Lee, S. A1 - Cabillic, J. A1 - Fallot, C. A1 - Hua, T. A1 - Dazhou, C. A1 - Changjun, Y. A1 - Chunxin, L. A1 - Hongmei, L. A1 - Lippa, K. A1 - Itoh, N. A1 - Quinn, L. A1 - Prevoo-Franzsen, D. A1 - Fernandes-Whaley, M. A1 - Gören, A. C. A1 - Gökcen, T. A1 - Gündüz, S. A1 - Krylov, A. A1 - Mikheeva, A. A1 - Baldan, A. A1 - van der Hout, J. W. A1 - van der Veen, A. M. H. T1 - CCQM-K131 Low-polarity analytes in a multicomponent organic solution: Polycyclic aromatic hydrocarbons (PAHs) in acetonitrile JF - Metrologia N2 - Solutions of organic analytes of known mass fraction are typically used to calibrate the measurement processes used to determine these compounds in matrix samples. Appropriate value assignments and uncertainty calculations for calibration solutions are critical for accurate measurements. Evidence of successful participation in formal, relevant international comparisons is needed to document measurement capability claims (CMCs) made by national metrology institutes (NMIs) and designated institutes (DIs). To enable NMIs and DIs to update or establish their claims, in 2015 the Organic Analysis Working Group (OAWG) sponsored CCQM-K131 "Low-Polarity Analytes in a Multicomponent Organic Solution: Polycyclic Aromatic Hydrocarbons (PAHs) in Acetonitrile". Polycyclic aromatic hydrocarbons (PAHs) result from combustion sources and are ubiquitous in environmental samples. The PAH congeners, benz[a]anthracene (BaA), benzo[a]pyrene (BaP), and naphthalene (Nap) were selected as the target analytes for CCQM-K131. These targets span the volatility range of PAHs found in environmental samples and include potentially problematic chromatographic separations. Nineteen NMIs participated in CCQM-K131. The consensus summary mass fractions for the three PAHs are in the range of (5 to 25) μg/g with relative standard deviations of (2.5 to 3.5) %. Successful participation in CCQM-K131 demonstrates the following measurement capabilities in determining mass fraction of organic compounds of moderate to insignificant volatility, molar mass of 100 g/mol up to 500 g/mol, and polarity pKow < −2 in a multicomponent organic solution ranging in mass fraction from 100 ng/g to 100 μg/g: (1) value assignment of primary reference standards (if in-house purity assessment carried out), (2) value assignment of single and/or multi-component organic solutions, and (3) separation and quantification using gas chromatography or liquid chromatography. KW - Benz[a]anthracene (BaA) KW - Benzo[a]pyrene (BaP) KW - Gas chromatography (GC) KW - Isotope dilution (ID) KW - Liquid chromatography (LC) KW - Mass spectrometry (MS) KW - Naphthalene (Nap) KW - Organic calibration solution KW - Polycyclic aromatic hydrocarbon (PAH) PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-471442 DO - https://doi.org/10.1088/0026-1394/56/1A/08003 SN - 0026-1394 SN - 1681-7575 VL - 56 IS - 1A SP - 08003, 1 EP - 102 PB - IOP Science AN - OPUS4-47144 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bilsel, M. A1 - Gökçen, T. A1 - Binici, B. A1 - Isleyen, A. A1 - Piechotta, Christian A1 - Kar-wai, A. A1 - Krylov, A. A1 - Miheeva, A. A1 - Beliakov, M. A1 - Palagina, M. A1 - chenko, Irina Tka A1 - Perkola, N. A1 - Lewin, M. A1 - Hua, T. T1 - High polarity analyte(s) in aqueous media: determination of L-PFOA and L-PFOS in ground water JF - Metrologia N2 - The CCQM-K156 comparison was coordinated by TUBITAK UME on behalf of the Organic Analysis Working Group (OAWG) of the Comité Consultatif pour la Quantité de Matière (CCQM) for National Measurement Institutes (NMIs) and Designated Institutes (DIs) which provide measurement services in organic analysis under the 'Comité International des Poids et Mesures' Mutual Recognition Arrangement (CIPM MRA). Perfluoro alkyl substances (PFAS) such as PFOS and PFOA have been used in numerous industrial applications and products. Because of their high stability and resistance to biodegradation, atmospheric photooxidation, direct photolysis and hydrolysis, they are extremely persistent in the environment. The European Union (EU) Water Framework Directive lists PFOS as a priority hazardous substance that poses a significant risk to the aquatic environment. The use of PFOS-containing Aqueous Film-Forming Foams (AFFFs) has been banned since June 2011 in the EU. As relatively water-soluble, effectively non-degradable compounds, PFOS and PFOA migrate to ground water. They are not removed in the conventional drinking water treatment, and therefore cause health risks in polluted areas. The EU Drinking Water Directive and the European Commission has proposed a limit value of 100 ng/L for the sum of 20 PFAS, including PFOS and PFOA. This study provides the means for assessing measurement capabilities for determination of high polarity measurands in a procedure that requires extraction, clean-up, analytical separation and detection. Successful participation in CCQM-K156 demonstrates measurement capabilities in determining mass fraction of organic compounds, with a molecular mass of 200 g/mol to 700 g/mol, having high polarity pKow -2, in a mass fraction range from 0.5 ng/kg to 500 ng/kg in aqueous media. Nine NMIs and DIs participated in the CCQM-K156 key comparison. Seven institutes reported their results. SPE was applied in the sample pre-treatment and LC-MS was applied for detection. All participating laboratories applied isotope dilution mass spectrometry (IDMS) techniques for quantification. Participants established the metrological traceability of their results using certified reference materials (CRMs) from NMIs with stated traceability; where commercially available high purity materials were used the purity was determined in-house. The CCQM-K156 results for L-PFOA and L-PFOS range from 2.75 ng/kg to 5.50 ng/kg with a % RSD of 19.5 % for L-PFOA and from 2.04 ng/kg to 4.45 ng/kg with a % RSD of 21.3 % for L-PFOS. The KCRV was assigned using a Hierarchical Bayesian Random Effects Model (HB REM) estimator from the values reported by six of the participants. One participant result of L-PFOS and one result of L-PFOA were excluded from the KCRV for technical reasons. The KCRV was 4.9 ng/kg ± 0.4 ng/kg for L-PFOA and 3.8 ng/kg ± 0.4 ng/kg for L-PFOS. The six institutes that were included in the assignment of consensus KCRV all agreed within their standard uncertainties. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database https://www.bipm.org/kcdb/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA). KW - PFAS KW - Surface water KW - ILC KW - CCQM PY - 2022 DO - https://doi.org/10.1088/0026-1394/59/1A/08016 VL - 59 IS - 1A SP - 1 EP - 3 PB - IOP Publishing AN - OPUS4-58941 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -