TY - CONF A1 - Hu, Wei-Hua A1 - Thöns, Sebastian A1 - Said, Samir A1 - Rücker, Werner ED - Cunha, A. ED - Caetano, E. ED - Ribeiro, P. ED - Müller, G. T1 - Resonance phenomenon in a wind turbine system under operational conditions N2 - A prototype of wind turbines in 5 megawatt dass was built and tested at the first German offshore wind energy test fteld in the North Sea. In order to investigate dynamic behaviors under a complex state of loads, a continuous dynamic monitoring System was implemented by Federal Institute for Material Research and Testing (BAM). It recorded structural responses and environmental/operational variables from November 2007 to October 2009. This paper presents significant resonance phenomenon due to the interaction in the tower-nacelle System under operational conditions. Modal parameters are automatically estimated by the poly reference Least Square Complex Frequency domain (p-LSCF) method. Campbell plot demonstrates that a three-blade passage frequency and its multiples f3n match with the natural frequencies of the wind turbine System in several modal Orders. The damping estimates decrease and the Vibration amplitude increase significantly. A control System is necessary to minimize the excessive vibrations. T2 - EURODYN 2014 - 9th International conference on structural dynamics CY - Porto, Portugal DA - 30.06.2014 KW - Wind turbine KW - Tower-nacelle system KW - Resonance KW - Continuous dynamic monitoring KW - Automated operational modal analysis PY - 2014 SN - 978-972-752-165-4 SN - 2311-9020 SP - 3619 EP - 3626 AN - OPUS4-32970 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hu, Wei-Hua A1 - Said, Samir A1 - Rohrmann, Rolf A1 - Rücker, Werner A1 - Cunha, A. T1 - Continuous dynamic monitoring of structures N2 - This paper presents the development of a continuous dynamic monitoring System and its applications to different structures, with the purpose of understanding structural real behaviours under operational conditions and detecting early structural modifications. The first part of paper introduces a complete continuous dynamic System, consists of signal acquisition and communication, automated signal processing and management, investigation of the interaction between structures and its environmental/operational conditions, feature extraction and detection of structural modification. The rest of paper describes the applications of continuous dynamic monitoring System to different structures such as a wind turbine System and a highway bridge. T2 - 13th International symposium on structural engineering (ISSE'13) CY - Hefei, China DA - 24.10.2014 KW - Continuous dynamic monitoring KW - Automated system identification KW - Environmental/operational effects KW - Resonance KW - Feature extraction KW - Structural modification PY - 2014 SN - 978-7-09-042032-9 SP - 1922 EP - 1933 PB - Science Press AN - OPUS4-32971 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -