TY - CONF A1 - Talebi, Elnaz A1 - Korzen, Manfred A1 - Espinós, A. A1 - Hothan, Sascha ED - Albero, Vicente T1 - The effect of damage location on the performance of seismically damaged concrete filled steel tube columns at fire N2 - In this paper, a nonlinear three-dimensional finite element (FE) model was developed and validated to study the effect of seismic damage location on the response of concrete filled tube (CFT) columns at fire after earthquakes. Three analyses were conducted consecutively in the modelling, namely, cyclic, thermal and structural. Results of the cyclic loading analysis comprising residual deformations were applied as the Initial condition to the thermal-stress model, replicating the seismic performance of column. Following, a nonlinear sequentially coupled-thermal stress Analysis was carried out to investigate the fire response of CFT columns after the seismic event. Three damage scenarios were contemplated, considering any possible potential damages that could be generated by the earthquake loading on CFT columns. The accuracy of the proposed FE model was examined by comparing the numerical results with that of available tests on fire and cyclic loading. By means of the validated model, the performance of damaged CFT columns was then investigated under fire after earthquakes. The level of damage was assumed as a high damage level, presuming that the column reached 50% of ist lateral resistance while still maintaining its overall stability after the earthquake. The results were presented broadly, including the axial deformation history as well as the fire resistance time for CFT columns. To have a comprehensive insight on the influence of damage location in columns, the fire response of damaged specimens was compared with that of an intact one. T2 - 12th International Conference on Advances in Steel-Concrete Composite Structures (ASCCS 2018) CY - Valencia, Spain DA - 27.06. 2018 KW - Fire after earthquake KW - Concrete filled tube (CFT) column KW - Finite element model KW - Seismically damaged column KW - Damage location KW - Fire performance PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-457694 SN - 978-84-9048-601-6 SP - 835 EP - 842 PB - Editorial Universitat Politècnica de València CY - València AN - OPUS4-45769 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Talebi, Elnaz A1 - Korzen, Manfred A1 - Hothan, Sascha T1 - The performance of concrete filled steel tube columns under postearthquake fires N2 - In this study, a nonlinear three-dimensional finite element (FE) model was developed and validated to investigate the response of concrete filled tube (CFT) columns subjected to post-earthquake fires. Three steps were considered successively in the modelling, namely, cyclic, thermal and structural analyses. Outputs from the cyclic loading including residual deformationswere imposed as an initial condition to the thermal-stress model, imitating the seismic response of the column. Subsequently, a nonlinear sequentially thermal-stress analysis was conducted to simulate the fire response of column after the earthquake. The proposed FE model was validated by comparing the simulation resultswith the observations of full-scale fire and cyclic tests available in the literature. The validated numericalmodelwas then used to study the behavior of CFT columns under the combined action of earthquake and fire as a multi-hazard event. Three probable seismic damage scenarios were considered in the column, namely, middle length, bottom and top end region damages. The level of damage was assumed as a high damage level, presuming that the column reached 50% of its lateral resistance while still maintaining ist overall stability after the earthquake. The results showed that the top and bottom end region damages have not significantly influence the fire response of the damaged column. Besides, the column with the middle span damage performed a lesser fire resistance time owing to the coincidence of damage location to that of onset of global buckling. KW - Post-earthquake fire KW - Concrete filled tube (CFT) column KW - Finite element analysis KW - Seismically damaged column KW - Fire resistance KW - Multi-hazard incident PY - 2018 U6 - https://doi.org/10.1016/j.jcsr.2018.07.013 SN - 0143-974X VL - 150 SP - 115 EP - 128 PB - Elsevier Ltd. AN - OPUS4-45813 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -