TY - JOUR A1 - Traulsen, C.H.-H. A1 - Kunz, V. A1 - Heinrich, Thomas A1 - Richter, S. A1 - Holzweber, Markus A1 - Schulz, A. A1 - von Krbek, L.K.S. A1 - Scheuschner, U.T.J. A1 - Poppenberg, J. A1 - Unger, Wolfgang A1 - Schalley, C.A. T1 - Synthesis and coordinative layer-by-layer deposition of pyridine-functionalized gold nanoparticles and tetralactam macrocycles on silicon substrates N2 - Coordination chemistry was applied to deposit pyridine-functionalized gold nanoparticles on silicon substrates. The particles were synthesized through the Brust/Schiffrin route with a subsequent ligand exchange reaction yielding well-defined particles of two different sizes. Multilayer deposition was carried out on a pyridine-terminated SAM, anchored on a hydroxyl-terminated silicon surface. Analogously, Hunter/Vögtle-type tetralactam macrocycle multilayers were deposited as well as mixed layers containing both either in an alternating sequence or as a macrocycle multilayer with a terminating nanoparticle layer. These composite layers were examined with respect to their ability to bind squaraine axles in the macrocycle cavities. The amount of guest bound is higher for the composite layer with alternating macrocycles and nanoparticles. KW - Layer-by-layer deposition KW - Functionalized Au nanoparticles KW - SEM KW - TEM KW - DLS KW - XPS KW - NEXAFS KW - ToF-SIMS KW - IR KW - UV-vis PY - 2013 U6 - https://doi.org/10.1021/la403222x SN - 0743-7463 SN - 1520-5827 VL - 29 IS - 46 SP - 14284 EP - 14292 PB - American Chemical Society CY - Washington, DC AN - OPUS4-29699 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dietrich, Paul A1 - Hennig, Andreas A1 - Holzweber, Markus A1 - Thiele, T. A1 - Borcherding, H. A1 - Lippitz, Andreas A1 - Schedler, U. A1 - Resch-Genger, Ute A1 - Unger, Wolfgang T1 - Surface analytical study of poly(acrylic acid)-grafted microparticles (beads): characterization, chemical derivatization, and quantification of surface carboxyl groups N2 - We report a surface analytical study of poly(methyl methacrylate) (PMMA) microparticles (beads) with a grafted shell of poly(acrylic acid) (PAA) with thicknesses up to 4 nm using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), and near-edge X-ray adsorption fine structure (NEXAFS) spectroscopy. These polymer microparticles were analyzed before and after reaction of the surface carboxyl (CO2H) groups with 2,2,2-trifluoroethylamine (TFEA) to gain a better understanding of methods with use of covalently bound probe molecules for surface group analysis. The results obtained with chemical derivatization XPS using TFEA are discussed in terms of surface quantification of reactive CO2H groups on these PAA-coated microparticles. A labeling yield of about 50% was found for TFEA-derivatized particles with amounts of surface-grafted CO2H groups of 99 µmol/g or more, which is consistent with predicted reaction yields for homogeneously dispersed PAA hydrogels. KW - Polymer microparticles KW - Poly(acrylic acid)-grafted microparticles KW - Beads KW - XPS KW - SEM KW - NEXAFS KW - Surface analysis KW - Fluorine labeling PY - 2014 U6 - https://doi.org/10.1021/jp505519g SN - 1932-7447 SN - 1089-5639 VL - 118 IS - 35 SP - 20393 EP - 20404 PB - Soc. CY - Washington, DC AN - OPUS4-31326 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -