TY - CONF A1 - Holtappels, Kai T1 - Explosion characteristics of hydrogen-oxygen and hydrogen-air mixtures at elevated temperatures and pressures T2 - 2nd European Hydrogen Energy Conference (EHEC) CY - Zaragoza, Spain DA - 2005-11-22 PY - 2005 AN - OPUS4-11465 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Schildberg, H.-P. A1 - Holtappels, Kai ED - Suter, G. ED - de Rademaeker, E. T1 - The course of explosions of CH4/O2/N2-mixtures in a 20 l sphere T2 - 13th International symposium on loss prevention and safety promotion in the process industries CY - Brugge, Belgium DA - 2010-06-06 KW - Deflagration KW - Detonation KW - Explosion regions PY - 2010 SN - 978-90-76019-291 VL - 02 SP - 475 EP - 478 CY - Brugge, Belgium AN - OPUS4-21491 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blanchard, R. A1 - Holtappels, Kai A1 - Kluge, Martin A1 - Schildberg, H.-P. A1 - Zeps, Robert ED - de Rademacher, E. ED - Schmelzer, P. T1 - Sizing of Explosion Pressure Relief using the Efflux Function N2 - Determination of deflagration venting requirements in chemical/process plants is usually carried out using well established standards employing an empirically based formula. However, this formula is shown to have severe shortcomings, especially in the range of low KG-values, where either negative or inconceivably large venting areas can be predicted. Due to these shortcomings a method has been developed using the efflux function for gases as a basis to predict the mass flow through a vent opening in a vessel during an internal explosion. The simulated rise in pressure due to the internal explosion is quantitatively determined from the KG-value, with the mass flow through the vent opening in the vessel resulting from the pressure difference between the vessel and its surroundings. This enables the maximum overpressure as a function of the pressure relief surface area to be predicted. The method takes into account the temperature of the efflux gases and turbulence enhancement brought about by the venting process. In the following paper explosion pressure relief experiments are described and the results from these experiments are compared to predictions from the efflux method. It is shown that by adjusting the assumed turbulence which evolves during the venting process, the reduced explosion pressure can be reasonably well reproduced. T2 - 15th International Symposium on Loss Prevention and Safety Promotion in the Process Industries and accompanying exhibition CY - Freiburg, Germany DA - 05.06.2016 KW - Deflagration KW - Explosion KW - Pressure relief KW - Venting KW - Efflux PY - 2016 SN - 978-88-95608-39-6 DO - https://doi.org/10.3303/CET1648082 SN - 2283-9216 VL - 48 SP - 487 EP - 492 PB - AIDIC Servizi S.r.l CY - Milano, Italy AN - OPUS4-37918 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Holtappels, Kai A1 - Pasman, H. J. T1 - Interpretation of gas explosion tests - extremes in explosion severity; Contract No. EVG1-CT-2002-00072 KW - Explosion limits KW - Explosion pressures KW - KG-values PY - 2007 UR - http://www.morechemistry.com/SAFEKINEX/deliverables/Del.%20No.10.pdf IS - 10 SP - 1 EP - 30 PB - Bundesanstalt für Materialforschung und -prüfung CY - Berlin AN - OPUS4-15926 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Holtappels, Kai A1 - Schröder, Volkmar A1 - Pekalski, A. A1 - Schildberg, H.-P. A1 - Pasman, H.J. ED - Suter, G. ED - de Rademaeker, E. T1 - Process safety by oxygen monitoring T2 - 13th International symposium on loss prevention and safety promotion in the process industries CY - Brugge, Belgium DA - 2010-06-06 PY - 2010 SN - 978-90-76019-291 VL - 02 SP - 181 EP - 186 CY - Brugge, Belgium AN - OPUS4-21441 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Ferrero, Fabio A1 - Kluge, Martin A1 - Hensel, Christina A1 - Schmidtchen, Ulrich A1 - Holtappels, Kai T1 - The behavior of acetylene cylinders involved in fire: An experimental and numerical analysis N2 - Fire exposure tests of acetylene cylinders were performed. The purpose of the experiments was to gather information on the behavior in fire of such vessels, depending on the initial charge of acetylene. In fact "empty" acetylene cylinders still contain the solvent in which acetylene is dissolved plus the amount of acetylene to saturation at atmospheric pressure and ambient temperature and may still constitute a threat to safety. In the fire exposure tests performed the hazardousness of these vessels was demonstrated, since it was observed that not only fully charged acetylene cylinders but also cylinders with saturated solvent can explode, provided the heat transfer to the vessel is sufficient. The times to explosion were shorter for fully charged cylinders, due to the higher initial pressure and to the faster pressure increase. The effects of the explosions are comparable for both fully charged cylinders and for cylinders with saturated solvent, except for the smaller fireball which is produced in the second case, due to the smaller amount of fuel available. In both cases the cylinder walls or at least fragments can fly further than 100 m away from the burst location. Results of the experiments are presented in the paper. During the tests, temperature measurements at the cylinder walls and in the cylinder interior were performed. Furthermore, the pressure in the cylinder was recorded. The collected data will serve for the validation of a numerical model for the simulation of the heating of acetylene cylinders involved in fire and of the afterward cooling with water, which has been developed. The constitutive model equations and the results of some simulations are presented in the paper. T2 - 19th International congress of chemical and process engineering (CHISA 2010) / 7th European congress of chemical engineering (ECCE-7) CY - Prague, Czech Republic DA - 2010-08-28 KW - Safety KW - Acetylene KW - Heat transfer KW - Fire KW - Simulation PY - 2010 SN - 978-80-02-02210-7 N1 - Geburtsname von Kluge, Martin: Beckmann-Kluge, M. - Birth name of Kluge, Martin: Beckmann-Kluge, M. IS - F3.1 / 0973 SP - 1 EP - 13 CY - Prague, Czech Republic AN - OPUS4-21923 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Holtappels, Kai A1 - Dietlen, Siegmund A1 - Schröder, Volkmar A1 - Brinkmann, Ch. A1 - Stickling, J. A1 - Schönbucher, A. T1 - Measurement and prediction of the inert gas influence on explosion limits for ethylene/nitrogen/air- and ethylene/carbon dioxide/air-mixtures at elevated pressures PY - 2001 DO - https://doi.org/10.1002/1521-4125(200112)24:12<1263::AID-CEAT1263>3.0.CO;2-L SN - 0930-7516 SN - 1521-4125 VL - 24 IS - 12 SP - 1263 EP - 1267 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-1223 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Holtappels, Kai A1 - Brinkmann, Ch. A1 - Dietlen, Siegmund A1 - Schröder, Volkmar A1 - Schönbucher, A. T1 - Measurement and Prediction of the Inert Gas Influence on Explosion Limits for Ethylene/Nitrogen/Air and Ethylene/Carbon-Dioxide/Air Mixtures at Elevated Pressures PY - 2001 SN - 0009-286X SN - 1522-2640 VL - 24 IS - 12 SP - 1263 EP - 1267 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-1719 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Holtappels, Kai T1 - Safety issues in the hydrogen value chain N2 - In a public lecture at UNAM JEDS Campus in Ongwediva, students, teachers and professors were introduced to safety issues in the hydrogen value chain, state of safety and open research issues. Existing knowledge gaps, identified by experts from the German Hydrogen Research Network, were presented to motivate the students and responsible persons at UNAM, that the implementation of a master course at the university is reasonable to train skilled workers for the development of a hydrogen infrastructure in Namibia. T2 - Public Lecture at UNAM JEDS Campus CY - Ongwediva, Namibia DA - 15.09.2025 KW - Hydrogen safety KW - Research topics KW - Perspective of skilled workers PY - 2025 AN - OPUS4-64439 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Holtappels, Kai A1 - Kluge, Martin A1 - Gebauer, Marek A1 - Grüneberg, Miriam A1 - Eliezer, D. T1 - Hydrogen storage in glass capillary arrays for portable and mobile systems T2 - 3rd International conference on hydrogen safety CY - Ajaccio, Corsica, France DA - 2009-09-16 KW - Glaskapillare KW - Hochdruckwasserstoff KW - Gasspeicherung KW - Mobile Speichersysteme PY - 2009 N1 - Geburtsname von Kluge, Martin: Beckmann-Kluge, M. - Birth name of Kluge, Martin: Beckmann-Kluge, M. IS - ID 204 SP - 1 EP - 8(?) AN - OPUS4-19905 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -