TY - CONF A1 - Hoffmann, V. A1 - Richter, Silke T1 - Progress at the calibration of light elements N2 - Analytical glow discharges with optical (GD-OES) and mass spectrometric (GD-MS) detection are able to obtain depth resolved information about the light elements hydrogen, carbon, nitrogen and oxygen in solid samples, where most of the other analytical techniques fail. However, the interpretation or even quantification of the measured signals is still very challenging. Problems arise due to physical effects (plasma processes such as the ‘Hydrogen effect’, the Doppler effect, self absorption or diffusion of hydrogen in the sample during sputtering) chemical effects(e.g. formation of compounds with argon or the matrix, poisoning of the sample or gettering) as well as instrumental difficulties (e.g. of the sensitivity, calibration and vacuum quality).. The GD techniques are direct solid sampling methods and require reference materials for calibration. Unfortunately the list of available certified reference materials (CRM) suited for calibration of light elements in different matrix is relatively short Therefore, sintered materials doped with the analytes H2, O2 and N2 were produced at IFW Dresden and applied as calibration standards for hydrogen, oxygen and nitrogen. Due to the high analyte concentration added, it is very likely that the real concentration agree well with the added amount of light elements in the corresponding phases. The validation of the determination of the light element concentration in the sintered samples was possible in some cases only due to the lack of suitable techniques. This fact proves the need for the development of a reliable quantification of light elements by GDS. A systematic dependence of the sputtering rate on the composition was found and can be explained by basic principles. Using mixtures of TiH2 and ZrH2 with Cu the ratio of hydrogen and Cu lines has a good correlation with the corresponding concentration ratio. The hydrogen emission yield however decreases over 0.3 m% hydrogen and finally the hydrogen intensity may even decrease. This behaviour can be explained by a very similar quenching of the hydrogen and copper intensity caused by the hydrogen effect. First experiments with GD-MS show no saturation of the hydrogen ion current and thus confirm the quenching of the emission yield in GD-OES. Sintered material for the oxygen calibration (Al2O3, CuO, Cu2O and MgO mixed with Cu, Al and Mg) confirmed the blue line shift effect at O I 130.22 nm, first time reported by Köster 2009 [1]. The effect is more pronounced at Mg than in Al and Cu, which due to line interference leads to a matrix dependent EY. This effect is negligible at O I 777.19 nm and the EY is matrix independent. Using GD-MS first promising results for the calibration of oxygen with these sintered samples could be obtained, when the sputtering rate was included in the evaluation. More recently also sintered material for nitrogen calibration (AlN mixed with Al and Si3N4 mixed with Cu) was produced and points to a matrix independent emission yield of nitrogen T2 - 04 IGDSS CY - Berlin, Germany DA - 15.04.2018 KW - Glow Discharge KW - Non metals PY - 2018 AN - OPUS4-46223 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -