TY - CONF A1 - Hoffmann, A. A1 - Lischeid, G. A1 - Koch, Matthias A1 - Lentzsch, P. A1 - Müller, M.E.H. T1 - Priority effects influence the production of mycotoxins of Fusarium and Alternaria N2 - Mycotoxigenic fungal pathogens Fusarium and Alternaria are a leading cause of loss in cereal production. On wheat-ears, they are confronted by bacterial antagonists such as pseudomonads. Studies on these groups’ interactions often neglect the infection process’s temporal aspects and the associated priority effects. In the present study, the focus was on how the first colonizer affects the subsequent ones. In a climate chamber experiment, wheat-ears were successively inoculated with two different strains (Alternaria tenuissima At625, Fusarium graminearum Fg23, or Pseudomonas simiae Ps9). Over three weeks, microbial abundances and mycotoxin concentrations were analyzed and visualized via Self Organizing Maps with Sammon Mapping (SOM-SM). All three strains revealed different characteristics and strategies to deal with co-inoculation: Fg23, as the first colonizer, suppressed the establishment of At625 and Ps9. Nevertheless, primary inoculation of At625 reduced all of the Fusarium toxins and stopped Ps9 from establishing. Ps9 showed priority effects in delaying and blocking the production of the fungal mycotoxins. The SOM-SM analysis visualized the competitive strengths: Fg23 ranked first, At625 second, Ps9 third. Our findings of species-specific priority effects in a natural environment and the role of the mycotoxins involved are relevant for developing biocontrol strategies. T2 - 42. Mycotoxin Workshop CY - Online meeting DA - 30.05.2021 KW - Microbe interactions KW - Antagonists KW - Mycotoxins PY - 2021 AN - OPUS4-52815 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hönig, Gerald A1 - Westerkamp, S. A1 - Hoffmann, A. A1 - Callsen, G. T1 - Shielding electrostatic fields in polar semiconductor nanostructures N2 - Polar semiconductor materials enable a variety of classic and quantum-light sources, which are optimized continuously. However, one key problem—the inherent electric crystal polarization of such materials—remains unsolved and deteriorates the radiative exciton decay rate. We suggest a sequence of reverse interfaces to compensate these polarization effects, while the polar, natural crystal growth direction is maintained. Former research approaches, like growth on less-polar crystal planes or even the stabilization of unnatural phases, never reached industrial maturity. In contrast, our concept provides a way for the development of ultrafast devices based on established growth processes for polar materials, while the electric potential landscape becomes adjustable. KW - Piezopolarisation KW - Spontane Polarisation KW - Halbleiterphysik KW - Nanophysik KW - Optoelektronik PY - 2017 U6 - https://doi.org/10.1103/PhysRevApplied.7.024004 SN - 2331-7019 VL - 7 IS - 2 SP - 024004-1 EP - 024004-12 PB - American Physical Society CY - College Park, MD 20740-3844 AN - OPUS4-39125 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hoffmann, A. A1 - Lischeid, G. A1 - Koch, Matthias A1 - Lentzsch, P. A1 - Sommerfeld, Thomas A1 - Müller, M.H. T1 - Co-Cultivation of Fusarium, Alternaria, and Pseudomonas on Wheat-Ears Affects Microbial Growth and Mycotoxin Production N2 - Mycotoxigenic fungal pathogens Fusarium and Alternaria are a leading cause of loss in cereal production. On wheat-ears, they are confronted by bacterial antagonists such as pseudomonads. Studies on these groups’ interactions often neglect the infection process’s temporal aspects and the associated priority effects. In the present study, the focus was on how the first colonizer affects the subsequent ones. In a climate chamber experiment, wheat-ears were successively inoculated with two different strains (Alternaria enuissima At625, Fusarium graminearum Fg23, or Pseudomonas simiae Ps9). Over three weeks, microbial abundances and mycotoxin concentrations were analyzed and visualized via Self Organizing Maps with Sammon Mapping (SOM-SM). All three strains revealed different characteristics and strategies to deal with co-inoculation: Fg23, as the first colonizer, suppressed the establishment of At625 and Ps9. Nevertheless, primary inoculation of At625 reduced all of the Fusarium toxins and stopped Ps9 from establishing. Ps9 showed priority effects in delaying and blocking the production of the fungal mycotoxins. The SOM-SM analysis visualized the competitive strengths: Fg23 ranked first, At625 second, Ps9 third. Our findings of species-specific priority effects in a natural environment and the role of the mycotoxins involved are relevant for developing biocontrol strategies. KW - Antagonists KW - Microbe interactions KW - Mycotoxins KW - Priority effect KW - SOM-SM PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-521554 VL - 9 IS - 2 SP - 443 PB - MDPI AN - OPUS4-52155 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Schlichting, S. A1 - Hönig, Gerald M. O. A1 - Müßener, J. A1 - Hille, P. A1 - Grieb, T. A1 - Teubert, J. A1 - Schörmann, J. A1 - Wagner, M. R. A1 - Rosenauer, A. A1 - Eickhoff, M. A1 - Hoffmann, A. A1 - Callsen, G. T1 - Tuning of the Quantum-Confined Stark Effect in Wurtzite [000-1] Group-III-Nitride Nanostructures by the Internal-Field-Guarded-Active-Region Design N2 - Recently, we suggested an unconventional approach [the so-called Internal-Field-Guarded-Active-Region Design (IFGARD)] for the elimination of the crystal polarization field induced quantum confined Stark effect (QCSE) in polar semiconductor heterostructures. And in this work, we demonstrate by means of micro-photoluminescence techniques the successful tuning as well as the elimination of the QCSE in strongly polar [000-1] wurtzite GaN/AlN nanodiscs while reducing the exciton life times by more than two orders of magnitude. The IFGARD based elimination of the QCSE is independent of any specific crystal growth procedures. Furthermore, the cone-shaped geometry of the utilized nanowires (which embeds the investigated IFGARD nanodiscs) facilitates the experimental differentiation between quantum confinement- and QCSE-induced emission energy shifts. Due to the IFGARD, both effects become independently adaptable. KW - Piezoelectricity KW - Quantum Confined Stark Effect KW - Nanophotonics KW - Semiconductor Nanostructures KW - Spontaneous Polarization PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-411013 UR - https://arxiv.org/abs/1707.06882 SN - 2331-8422 IS - arXiv:1707.06882 SP - 1 EP - 9 PB - Cornell University CY - Ithaca, NY AN - OPUS4-41101 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wagner, M. R. A1 - Schlichting, S. A1 - Müßener, J. A1 - Hille, P. A1 - Teubert, J. A1 - Schörmann, J. A1 - Rosenauer, A. A1 - Eickhoff, M. A1 - Hoffmann, A. A1 - Callsen, G. A1 - Hönig, Gerald M. O. T1 - Suppression of the quantum confined Stark effect in polar III-nitride heterostructures N2 - One of the most significant limitations for the quantum efficiency of group III-nitride based light emitters is the spatial electron-hole separation due to the quantum-confined Stark effect (QCSE). To overcome this problem, Hönig et al. [1] proposed a novel concept, the Internal-Field-Guarded-Active-Region Design (IFGARD), which suppresses the QCSE for wurtzite crystals in the [0001] direction. Here, we show how encapsulating the active region by additional guard layers results in a strong reduction of the built-in electric field in c-plane wurtzite nanostructures. Even more importantly, we demonstrate the first experimental evidence for the successful realization of an IFGARD structure based on GaN/AlN heterostructures embedded in GaN nanowires. By means of power-dependent and time-resolved µ-photoluminescence (µ-PL) we experimentally proof the validity of the unconventional IFGARD structure. We managed to tune the emission of 4-nm-thick GaN nano-discs up to 3.32 eV at low excitation powers, which is just 150 meV below the bulk GaN bandgap. Our results demonstrate an almost complete elimination of the QCSE in comparison to conventional structures which show approximately 1 eV red-shifted emission. The suppression of the QCSE results in a significant increase of the radiative exciton decay rates by orders of magnitude and demonstrates the potential of IFGARD structures for future light sources based on polar heterostructures. [1] Hönig et al., Phys. Rev. Applied 7, 024004 (2017) T2 - International Conference on Nitride Semiconductors 12 of the European Materials Research Society CY - Strasbourg, France DA - 24.07.2017 KW - Nanophotonics KW - Piezoelectricity KW - Quantum confined stark effect KW - Semiconductor nanostructures KW - Spontaneous polarization PY - 2017 AN - OPUS4-41194 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schlichting, S. A1 - Hönig, Gerald A1 - Müßener, J. A1 - Hille, P. A1 - Grieb, T. A1 - Westerkamp, S. A1 - Teubert, J. A1 - Schörmann, J. A1 - Wagner, M.R. A1 - Rosenauer, A. A1 - Eickhoff, M. A1 - Hoffmann, A. A1 - Callsen, G. T1 - Suppression of the quantum-confined Stark effect in polar nitride heterostructures N2 - Recently, we suggested an unconventional approach (the so-called Internal-Field-Guarded-Active-Region Design “IFGARD”) for the elimination of the quantum-confined Stark effect in polar semiconductor heterostructures. The IFGARD-based suppression of the Stark redshift on the order of electronvolt and spatial charge carrier separation is independent of the specific polar semiconductor material or the related growth procedures. In this work, we demonstrate by means of micro-photoluminescence techniques the successful tuning as well as the elimination of the quantum-confined Stark effect in strongly polar [000-1] wurtzite GaN/AlN nanodiscs as evidenced by a reduction of the exciton lifetimes by up to four orders of magnitude. Furthermore, the tapered geometry of the utilized nanowires (which embed the investigated IFGARD nanodiscs) facilitates the experimental differentiation between quantum confinement and Stark emission energy shifts. Due to the IFGARD, both effects become independently adaptable. KW - Nanophotonics KW - Photonic devices KW - Single photon and quantum effects PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-457884 UR - https://www.nature.com/articles/s42005-018-0044-1.epdf?author_access_token=TY108APMwI3Sy8_rbgAfMdRgN0jAjWel9jnR3ZoTv0Nca8yl_PwcuYy5S8D5-135dHiIk0H3cLNs57LA06d05O3lzyobDE7c_u32aHX8LlqxgvsOeicEftHVuupGzE3laWz-YTIw9mi-TlS8nsUOFQ%3D%3D SN - 2399-3650 VL - 1 SP - 48, 1 EP - 8 PB - Springer Nature AN - OPUS4-45788 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -