TY - GEN A1 - Clifford, C. A1 - Stintz, M. A1 - Hodoroaba, Vasile-Dan A1 - Unger, Wolfgang A1 - Fujimoto, T. ED - Hodoroaba, Vasile-Dan ED - Unger, Wolfgang ED - Shard, A. G. T1 - International standards in nanotechnologies N2 - This chapter provides an overview of what standards are, why they are important, and how they are developed. There is a focus on the work of standards committees relevant to nanotechnology measurement and characterization with tables detailing the standards that are currently available for a large number of different techniques, materials, and applications at the nanoscale. KW - Standards KW - Nanotechnology KW - Reproducibility KW - ISO KW - CEN KW - VAMAS PY - 2020 SN - 978-0-12-814182-3 U6 - https://doi.org/10.1016/B978-0-12-814182-3.00026-2 SP - 511 EP - 525 PB - Elsevier CY - Amsterdam AN - OPUS4-50165 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hodoroaba, Vasile-Dan A1 - Unger, Wolfgang A1 - Shard, A. G. ED - Hodoroaba, Vasile-Dan ED - Unger, Wolfgang ED - Shard, A. G. T1 - Conclusions and perspectives N2 - This chapter briefly summarizes the methods selected within this book for the characterization of nanoparticles with regard to commonly accessible properties: nanoparticle size and size distribution, shape, surface area, surface charge, aggregation state, structure, chemical composition, surface chemistry, and nanoparticle number concentration. Current progress of measurement and analysis, as far as possible according to standard operation procedures, has been the focus of this work. A number of new and less commonly used methods have not been covered, and we outline some of these in this chapter. Future challenges such as automated measurement and analysis, read-across approaches for the prediction of properties, knowledge of measurement uncertainties, the need for certified reference materials, and the necessity to complement measurements methods to obtain more reliable results are covered, and the unmet measurement requirements for real-world nanoparticles are described. KW - Physicochemical characterization KW - Standard operation procedures KW - Data correlation KW - Method development KW - Trends PY - 2020 SN - 978-0-12-814182-3 U6 - https://doi.org/10.1016/B978-0-12-814182-3.00006-7 SP - 527 EP - 534 PB - Elsevier CY - Amsterdam AN - OPUS4-50167 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Müller, Anja A1 - Heinrich, Thomas A1 - Tougaard, S. A1 - Werner, W. S. M. A1 - Hronek, M. A1 - Kunz, Valentin A1 - Radnik, Jörg A1 - Stockmann, Jörg M. A1 - Hodoroaba, Vasile-Dan A1 - Benemann, Sigrid A1 - Nirmalananthan-Budau, Nithiya A1 - Geißler, Daniel A1 - Sparnacci, K. A1 - Unger, Wolfgang T1 - Correction to "Determining the thickness and completeness of the shell of polymer core-shell nanoparticles by X-ray photoelectron spectroscopy, secondary ion mass spectrometry, and transmission scanning electron microscopy" N2 - This is a corrigendum to the original article "Determining the thickness and completeness of the shell of polymer core-shell nanoparticles by X-ray photoelectron spectroscopy, secondary ion mass spectrometry, and transmission scanning electron microscopy" that was published in "The journal of physical chemistry C", vol. 123 (2019), no. 49 pp. 29765-29775. PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-505451 SN - 1932-7447 SN - 1932-7455 VL - 124 IS - 6 SP - 3923 PB - American Chemical Society CY - Washington, DC AN - OPUS4-50545 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Shard, A. G. A1 - Hodoroaba, Vasile-Dan A1 - Unger, Wolfgang ED - Hodoroaba, Vasile-Dan ED - Unger, Wolfgang ED - Shard, A. G. T1 - Introduction N2 - The purpose of this book is to provide a comprehensive collection of analytical methods that are commonly used to measure nanoparticles, providing information on one, or more, property of importance. The chapters provide up-to-date information and guidance on the use of these techniques, detailing the manner in which they may be reliably employed. Within this chapter, we detail the rationale and context of the whole book, which is driven by the observation of a low level of reproducibility in nanoparticle research. The aim of the book is to encourage awareness of both the strengths and weaknesses of the various methods used to measure nanoparticles and raise awareness of the range of methods that are available. The editors of the book have, for many years, been engaged in European projects and standardization activities concerned with nanoparticle analysis and have identified authors who are experts in the various methods included within the book. This has produced a book that can be used as a definitive guide to current best practice in nanoparticle measurement. KW - Nanoparticles KW - Size distribution KW - Shape KW - Chemistry KW - Coating KW - Concentration KW - Standards KW - Charge KW - Characterisation PY - 2020 SN - 978-0-12-814182-3 U6 - https://doi.org/10.1016/B978-0-12-814182-3.00001-8 SP - 1 EP - 6 PB - Elsevier CY - Amsterdam AN - OPUS4-50166 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Unger, Wolfgang A1 - Wirth, Thomas A1 - Hodoroaba, Vasile-Dan ED - Hodoroaba, Vasile-Dan ED - Unger, Wolfgang ED - Shard, A. G. T1 - Auger electron spectroscopy N2 - An introduction in the application of Auger Electron Spectroscopy to surface chemical analysis of nanoparticles is given. Auger Electron Spectroscopy is a mature method in the field of surface chemical analysis. The chapter addresses the physical basis of the method, the principal design of recent instruments together with modes of operation and options for the presentation of spectra, as well as different approaches for qualitative (including identification of chemical species) and quantitative surface analysis of elements. An application paragraph on surface chemical analysis of nanoparticles by AES or SAM introduces the different measurement approaches and sample preparation strategies applied by analysts. The analysis of nanoparticle ensembles, the so-called selected point analysis where a narrow primary electron beam is centered on an individual nanoparticle, and chemical mapping of individual nanoparticles (or a line scan across) are addressed. Existing literature is reviewed and informative case studies presented. Limitations and pitfalls in the application of AES in surface chemical analysis of nanoparticles are also addressed. KW - Auger Electron Spectroscopy KW - Surface chemical analysis KW - Imaging surface chemical analysis KW - Nanoparticles KW - Nanotechnology PY - 2020 SN - 978-0-12-814182-3 U6 - https://doi.org/10.1016/B978-0-12-814182-3.00020-1 SP - 373 EP - 395 PB - Elsevier CY - Amsterdam AN - OPUS4-50119 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -