TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Yamamoto, K. A1 - Grulke, E. A. A1 - Maurino, V. ED - Bosse, H. ED - Buhr, E. ED - Dziomba, T. ED - Hodoroaba, Vasile-Dan ED - Klein, T. ED - Krumrey, M. T1 - Shape controlled TiO2 nanoparticles as candidates for nano-CRM’s – an ISO case study T2 - PTB-Bericht F-61 - NanoWorkshop 2018: Workshop on Reference Nanomaterials N2 - Extraction of true, 3D shape (and size) of non-spherical nanoparticles (NPs) is associated with Errors by conventional 2D electron microscopy using projection images. Significant efforts within the ISO technical committee TC 229 ‘Nanotechnologies’ are aimed at establishing accurate TEM and SEM measurement of NP size and shape as robust, standard procedures. Study groups have been organizing inter-laboratory comparisons on well-selected NP systems according to the market needs, such as aggregated titania nano-powder for which size and shape distribution of primary crystallites of irregular shape must be measured accurately. To be noticed is e. g. the fact that the measurement procedure allows only manual selection of the particles clearly distinguishable for analysis as well as manual definition of the contour of the imaged NPs. An inter-laboratory exercise on titania NPs (pure anatase, grown by hydrothermal synthesis) of well-defined non-spherical shape, i.e. bipyramidal, has been recently started within ISO/TC 229 under similar conditions as for the irregular shaped titania. In the TEM micrograph the particles tracked manually according to the measurement protocol. Overlapped particles were allowed to be considered, as long as they are clearly distinguishable. One decisive NP selection criterion was to analyze only those NPs with a roundness value below 0.7, i.e. the NPs laying on the support foil and, hence, with projection areas clearly deviating from perfect circles (R=1). The overall evaluation (for 15 labs) of the size descriptors (area, Feret, minFeret, perimeter) and shape descriptors (aspect ratio, roundness, compactness, extent) by analysis of variance is just to be finished and included in ISO/WD 21363 Nanotechnologies -- Protocol for particle size distribution by transmission electron microscopy. T2 - NanoWorkshop 2018: Workshop on Reference Nanomaterials CY - Berlin, Germany DA - 14.05.2018 KW - Titanium dioxide KW - Nanoparticles KW - Shape-controlled KW - Electron microscopy PY - 2019 SN - 978-3-95606-440-1 DO - https://doi.org/https://doi.org/10.7795/110.20190412 SN - 0179-0609 VL - F-61 SP - 245 EP - 255 PB - Physikalisch-Technische Bundesanstalt CY - Braunschweig und Berlin AN - OPUS4-49990 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mech, A. A1 - Gaillard, C. A1 - Marvin, H. A1 - Wohlleben, W. A1 - Hodoroaba, Vasile-Dan A1 - Babick, F. A1 - Friedrich, C. M. A1 - Brüngel, R. A1 - Rückert, J. A1 - Ghanem, A. A1 - Weigel, S. T1 - The NanoDefine Decision Framework and NanoDefiner e-Tool: a practical guide to the identification of nanomaterials T2 - PTB-Bericht F-61 - NanoWorkshop 2018: Workshop on Reference Nanomaterials N2 - The European Commission's recommendation on the definition of nanomaterial [2011/696/EU] is broadly applicable across different regulatory sectors and requires the quantitative size Determination of constituent particles in samples down to 1 nm. A material is a nanomaterial if 50 % or more of the particles are in the size range 1-100 nm. The implementation of the definition in a regulatory context challenges measurement methods to reliably identify nanomaterials and ideally also nonnanomaterials as substance or product ingredient as well as in various matrices. The EU FP7 NanoDefine project [www.nanodefine.eu] addressed these challenges by developing a robust, readily implementable and cost-effective measurement strategy to decide for the widest possible range of materials whether it is a nanomaterial or not. It is based on existing and emerging particle measurement techniques evaluated against harmonized, material-dependent performance criteria and by intra- and inter-lab comparisons. Procedures were established to reliably measure the size of particles within 1-100 nm, and beyond, taking into account different shapes, coatings and chemical compositions in industrial materials and consumer products. Case studies prove their applicability for various sectors, including food, pigments and cosmetics. A main outcome is the establishment of an integrated tiered approach including rapid screening (Tier 1) and confirmatory methods (tier 2), a decision support flow scheme and a user manual to guide end-users, such as manufacturers, in selecting appropriate methods. Another main product is the “NanoDefiner” e-Tool which implements the flow scheme in a user-friendly software and guides the user in a semi-automated way through the entire decision procedure. It allows a cost-effective selection of appropriate methods for material classification according to the EC's nanomaterial definition and provides a comprehensive report with extensive explanation of all decision steps to arrive at a transparent identification of nanomaterials as well as non-nanomaterials for regulatory purposes. T2 - NanoWorkshop 2018: Workshop on Reference Nanomaterials CY - Berlin, Germany DA - 14.05.2018 KW - Definition of nanomaterial KW - Regulation PY - 2019 SN - 978-3-95606-440-1 SN - 0179-0609 VL - F-61 SP - 114 EP - 124 PB - Physikalisch-Technische Bundesanstalt CY - Braunschweig und Berlin AN - OPUS4-49992 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maurino, V. A1 - Pellutiè, L. A1 - Pellegrino, F. A1 - Ortel, Erik A1 - Hodoroaba, Vasile-Dan A1 - Isopescu, R. T1 - Synthesis of size and shape controlled TiO2 nanoparticles: possible CRM’s candidates for size, shape and functional properties T2 - PTB-Bericht F-61 - NanoWorkshop 2018: Workshop on Reference Nanomaterials N2 - Titanium dioxide is one of the most studied metal oxides due to its chemical, surface, electronic and (photo)catalytic properties, providing this material of multisectorial applications ranging from healthcare, photocatalysis, smart materials with self cleaning and self sterilizing properties and solar energy harvesting. However it is difficult to correlate the functional properties of TiO2 nanomaterials to the properties at single nanoparticle level due to the high polydispersity in shape, size and surface features of the currently available TiO2 nanoparticles (NPs). Although intensive experimental and theoretical studies have been conducted on the reactivity of different surfaces of metal oxides such as TiO2 much less attention is paid on the dependence of functional properties, like photocatalytic activity, dye adsorption, open circuit potential and fill factor in dye sensitized solar cells, on crystal facets in different orientations. One of the goal of SETNanoMetro project was the development of design rules to tune crystal facets of TiO2 NPs in order to optimize and control functional properties. In the present work we have developed a series of design rules in order to obtain sets of anatase TiO2 NPs with low polydispersity and to tune their shape and size by hydrothermal processing of Ti(IV)- Triethanolamine complex in presence of different shape controllers. Through a careful experimental design, a predictive soft model was developed. The model is able to predict the synthesis outcome allowing to tune the shape factor from 5 (prisms) to 1.5 (bipyramids) to 0.2 (platelets). This allows to control the main crystal facets exposed ranging from (100) to (001). Due to the dependence of functional properties of nanomaterials on shape distribution and not only size, the availability of NPs sets with uniform and well defined and tunable shapes can be of paramount relevance in order to produce reference nanomaterials for shape measurement. T2 - NanoWorkshop 2018: Workshop on Reference Nanomaterials CY - Berlin, Germany DA - 14.05.2018 KW - Anatase KW - shape control KW - Hydrothermal synthesis PY - 2019 SN - 978-3-95606-440-1 SN - 0179-0609 VL - F-61 SP - 146 EP - 162 PB - Physikalisch-Technische Bundesanstalt CY - Braunschweig und Berlin AN - OPUS4-49993 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mielke, Johannes A1 - Babick, F. A1 - Uusimäki, T. A1 - Müller, P. A1 - Verleysen, E. A1 - Hodoroaba, Vasile-Dan T1 - Evaluation of electron microscopy techniques for the purpose of classification of nanomaterials T2 - European Microscopy Congress 2016: Proceedings N2 - One current and much-debated topic in the characterization of nanomaterials (NM) is the implementation of the recently introduced recommendation on a definition of a nanomaterial by the European Commission. All currently available sizing techniques able to address nanoparticles were systematically evaluated. It was demonstrated that particle sizing techniques like: analytical centrifugation, particle tracking analysis, single-particle inductively coupled plasma mass-spectrometry, differential electrical mobility analysis, dynamic light scattering, small angle X-ray scattering, ultrasonic attenuation spectrometry, but also gas Adsorption analysis based on the BET-method can be applied for a screening classification. However, the quality of the results depends on the individual material to be classified. For well-dispersed, nearly spherical (nano)particles most of the sizing techniques can be applied in a quick and reliable way. In contrast, the classification of most real-world materials is a challenging task, mainly due to non-spherical particle shape, large polydispersity or strong agglomeration/ aggregation of the particles. In the present study it was shown that these issues can be resolved in most cases by electron microscopy as a confirmatory classification technique. Electron microscopy techniques such as TEM, STEM, SEM or TSEM transmission in SEM) are capable of assessing the size of individual nanoparticles accurately (see Figures 1 and 2). Nevertheless the challenging aspect is sample preparation from powder or liquid form on the substrate, so that a homogeneous distribution of well-separated (deagglomerated) particles is attained. The systematic study in this work shows examples where the extraction of the critical, smallest particle dimension - as the decisive particle parameter for the classification as a NM - is possible by analysing the sample after its simple, dry preparation. The consequences of additional typical issues like loss of information due to Screening of smaller particles by larger ones or the (in)ability to access the constituent particles in aggregates are discussed. T2 - European Microscopy Congress emc 2016 CY - Lyon, France DA - 28.08.2016 KW - Nanomaterial classification KW - Nanoparticles KW - Electron microscopy PY - 2016 SN - 9783527808465 DO - https://doi.org/10.1002/9783527808465.EMC2016.5767 SP - 13 EP - 14 PB - Wiley-VCH AN - OPUS4-44087 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Holzweber, Markus A1 - Hodoroaba, Vasile-Dan A1 - Unger, Wolfgang T1 - What about ionic liquids as a 'hot' certified reference material candidate to check your EDS below 1 keV? T2 - M&M 2015 - Microscopy & Microanalysis (Proceedings) N2 - Energy-dispersive X-ray spectrometry (EDX) is one of the most applied methods used for the analysis of the chemical composition of solids and thin films. Recent progress in EDS (Energy Dispersive X-ray Spectrometer) technology has increased the general performance also in the energy range < 1 keV addressing low Z elements. Suitable test materials to be employed especially to check the low-energy EDS performance – also in line with ISO 15632 - are rather limited and mainly based on C K and F K lines. In order to obtain valid results in laboratories accredited in compliance with ISO/IEC 17025 it is necessary to periodically check the instrument performance. T2 - M&M 2015 - Microscopy & Microanalysis CY - Portland, Oregon, USA DA - 02.08.2015 KW - Reference material KW - EDX KW - Ionic liquids PY - 2015 DO - https://doi.org/10.1017/S1431927615009356 VL - 21 SP - Suppl. 3, Paper 0856 AN - OPUS4-34211 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Rades, Steffi A1 - Salge, T. A1 - Mielke, Johannes A1 - Ortel, Erik A1 - Schmidt, R. T1 - Characterisation of nanoparticles by means of high-resolution SEM/EDS T2 - EMAS 2015 - 14th European workshop on modern developments and applications in microbeam analysis N2 - Advances in scanning electron microscopy (SEM) enable the high-resolution imaging of single nanoparticles (NPs) with sizes well below 10 nm. The SEM analysis in transmission mode (T-SEM) of NPs on thin film supports has many benefits when compared to the analysis of NPs on bulk substrates. The enhanced material (mass - thickness) contrast of the T-SEM imaging mode is well suited for in-depth and, particularly valuable, to very accurate, traceable, lateral dimensional measurements of NPs. Compared to samples prepared on bulk substrates, T-SEM with energy dispersive X-ray spectroscopy (EDS) achieves a drastically improved spatial resolution of the emitted X-rays. The poor signal-to-noise ratio of the X-ray spectra emitted by a single nanoparticle (NP) can be improved by the use of high-sensitivity (high collection solid angle) silicon drift (SDD), energy-dispersive X-ray spectrometers (EDS). The EDS spectral imaging of a single NP with a spatial resolution below 10 nm has become possible. This is demonstrated by means of various examples of nanostructures. Advanced data processing of T-SEM/EDS results sets the stage for the automated classification of NPs by feature analysis. This method combines the detection of morphological structures of interest by image processing of T-SEM micrographs with the chemical classification by EDS. T2 - EMAS 2015 - 14th European workshop on modern developments and applications in microbeam analysis CY - Portoroz, Slovenia DA - 03.05.2015 KW - SEM KW - T-SEM KW - EDX KW - Nanoparticles KW - High-resolution PY - 2015 SN - 978-90-8227-691-6 DO - https://doi.org/10.1088/1757-899X/109/1/012006 SP - NUR code:972 - Materials Science, 187-199 AN - OPUS4-33258 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nadejde, C. A1 - Neamtu, Mariana A1 - Hodoroaba, Vasile-Dan A1 - Schneider, Rudolf A1 - Paul, Andrea A1 - Ababei, G. A1 - Panne, Ulrich T1 - Green Fenton-like catalysts for the removal of water pollutants T2 - Materials for Energy, Efficiency and Sustainability N2 - Two types of surface modified magnetite (Fe3O4) nanoparticles, coated with either tannic acid (TA) or dissolved natural organic matter (NOM), were evaluated as magnetic heterogeneous catalysts. Simple and efficient procedures for the synthesis of the magnetic catalysts were employed, their properties being fully assessed by various characterization techniques. The catalytic activity in heterogeneous oxidation of aqueous solutions containing Bisphenol A (BPA) over the catalysts was comparatively studied. The optimum experimental parameters were: 1g/L of catalysts, 10 mM H2O2, under UV irradiation. The highest mineralization rates were observed for Fe3O4-TA catalyst. More than 80% of BPA were removed after 30 minutes of reaction time under the specified experimental conditions. The results showed that the obtained catalysts are suitable candidates for the removal of pollutants in wastewaters by means of heterogeneous reaction T2 - TechConnect World Innovation Conference Nanotech 2015 CY - Washington, DC, Maryland, USA DA - 14.06.2015 KW - Nanocatalysts KW - Characterization KW - Fenton oxidation KW - Wastewater KW - Bisphenol A degradation PY - 2015 SN - 978-1- 4987-4733-2 SN - 978-1-4987-4728-8 VL - 2 SP - 87 EP - 90 PB - CRC Press, Taylor&Francis Group AN - OPUS4-40074 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nadejde, C. A1 - Neamtu, Mariana A1 - Hodoroaba, Vasile-Dan A1 - Schneider, Rudolf A1 - Ababei, G. A1 - Panne, Ulrich T1 - Characterization and application of Green Fenton-like catalysts for the removal of water pollutants T2 - PTIM 2015 Book of Proceedings N2 - Three types of magnetite-chitosan/iron oxalate/iron citrate nanoparticles (NP) were evaluated as magnetic heterogeneous catalysts for water treatment. T2 - PTIM 2015, 1st International Caparica Conference on Pollutant Toxic Ions and Molecules CY - Caparica, Portugal DA - 02.112015 KW - Bisphenol A degradation KW - Nanocatalysts KW - Characterization KW - Fenton oxidation KW - Wastewater PY - 2015 SN - 978-989-99361-6-4 SP - 186 EP - 187 PB - Proteomass AN - OPUS4-40082 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Salge, T. A1 - Terborg, R. A1 - Ball, A. D. A1 - Broad, G.R. A1 - Kearsley, A.T. A1 - Jones, C.G. A1 - Smith, C. A1 - Rades, Steffi A1 - Hodoroaba, Vasile-Dan ED - Hozak, P. T1 - Advanced SEM/EDS analysis using an annular silicon drift detector (SDD): Applications in nano, life, earth and planetary sciences below micrometer scale T2 - IMC 2014 - 18th International microscopy congress (Proceedings) T2 - IMC 2014 - 18th International microscopy congress CY - Prague, Czech Republic DA - 2014-09-07 PY - 2014 SN - 978-80-260-6720-7 SP - IT-5-P-1842, 1-2 AN - OPUS4-31944 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Terborg, R. A1 - Hodoroaba, Vasile-Dan A1 - Falke, M. A1 - Käppel, A. ED - Hozak, P. T1 - Characterization of EDS systems with respect to the geometrical collection efficiency T2 - IMC 2014 - 18th International microscopy congress (Proceedings) T2 - IMC 2014 - 18th International microscopy congress CY - Prague, Czech Republic DA - 07.09.2014 KW - EDS KW - EDX KW - Geometrical collection efficiency KW - Solid angle PY - 2014 SN - 978-80-260-6720-7 SP - IT-5-P-1533, 1-2 AN - OPUS4-31945 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -