TY - JOUR A1 - Pellegrino, Francesco A1 - Ortel, Erik A1 - Mielke, Johannes A1 - Schmidt, R. A1 - Maurino, V. A1 - Hodoroaba, Vasile-Dan T1 - Customizing New Titanium Dioxide Nanoparticles with Controlled Particle Size and Shape Distribution: A Feasibility Study Toward Reference Materials for Quality Assurance of Nonspherical Nanoparticle Characterization N2 - An overview is given on the synthesis of TiO2 nanoparticles with well-defined nonspherical shapes (platelet like, bipyramidal, and elongated), with the focus on controlled, reproducible synthesis, as a key requirement for the production of reference materials with homogeneous and stable properties. Particularly with regard to the nanoparticle shapes, there is a high need of certified materials, solely one material of this type being commercially available since a few months (elongated TiO2). Further, measurement approaches with electron microscopy as the golden method to tackle the nanoparticle shape are developed to determine accurately the size and shape distribution for such nonspherical particles. A prerequisite for accurate and easy (i.e., automated) image analysis is the sample preparation, which ideally must ensure a deposition of the nanoparticles from liquid suspension onto a substrate such that the particles do not overlap, are solvent-free, and have a high deposition density. Challenges in the Synthesis of perfectly monodispersed and solvent-free TiO2 nanoparticles of platelet and acicular shapes are highlighted as well as successful measurement approaches on how to extract from 2D projection electron micrographs the most accurate spatial information, that is, true 3D size, for example, of the bipyramidal nanoparticles with different geometrical orientations on a substrate. KW - Nanoparticles KW - Titanium dioxide KW - Reference materials KW - Standardisation KW - Particle size and shape distribution PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-538849 VL - 24 IS - 6 SP - 1 EP - 10 PB - Wiley-VCH AN - OPUS4-53884 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hodoroaba, Vasile-Dan A1 - Cios, G. A1 - Tokarski, T. A1 - Mansfeld, Ulrich A1 - Ortel, Erik A1 - Mielke, Johannes A1 - Pellegrino, F. A1 - Maurino, V. T1 - Towards 3D Understanding of Non-spherical Nanoparticles by Transmission Kikuchi Diffraction (TKD) for Improved Particle Size Distribution by Electron Microscopy N2 - In this paper one refined approach is applied to determine the exact orientation of bipyramidal TiO2 nanoparticles prepared with good dispersion as almost isolated particles on a carbon TEM grid. The advantages of the recently developed high-throughput Transmission Kikuchi Diffraction (TKD) are used to identify quickly and reliably the geometrical orientation of the crystalline TiO2 nanoparticle bipyramids (anatase) on a statistically relevant number of particles. KW - Nanoparticles KW - Transmission Kikuchi Diffraction (TKD) KW - Electron microscopy KW - TiO2 KW - 3D PY - 2020 U6 - https://doi.org/10.1017/S1431927620013999 VL - 26 IS - S2 SP - 260 EP - 261 PB - Cambridge University Press CY - Cambridge, UK AN - OPUS4-51772 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wohlleben, W. A1 - Mielke, Johannes A1 - Bianchin, A. A1 - Ghanem, A. A1 - Freiberger, H. A1 - Rauscher, H. A1 - Gemeinert, Marion A1 - Hodoroaba, Vasile-Dan T1 - Reliable nanomaterial classification of powders using the volume-specific surface area method N2 - The volume-specific surface area (VSSA) of a particulate material is one of two apparently very different metrics recommended by the European Commission for a definition of "nanomaterial" for regulatory purposes: specifically, the VSSA metric may classify nanomaterials and non-nanomaterials differently than the median size in number metrics, depending on the chemical composition, size, polydispersity, shape, porosity, and aggregation of the particles in the powder. Here we evaluate the extent of agreement between classification by electron microscopy (EM) and classification by VSSA on a large set of diverse particulate substances that represent all the anticipated challenges except mixtures of different substances. EM and VSSA are determined in multiple labs to assess also the level of reproducibility. Based on the results obtained on highly characterized benchmark materials from the NanoDefine EU FP7 project, we derive a tiered screening strategy for the purpose of implementing the definition of nanomaterials. We finally apply the Screening strategy to further industrial materials, which were classified correctly and left only borderline cases for EM. On platelet-shaped nanomaterials, VSSA is essential to prevent false-negative classification by EM. On porous materials, approaches involving extended Adsorption isotherms prevent false positive classification by VSSA. We find no false negatives by VSSA, neither in Tier 1 nor in Tier 2, despite real-world industrial polydispersity and diverse composition, shape, and coatings. The VSSA screening strategy is recommended for inclusion in a technical guidance for the implementation of the definition. KW - Nanomaterial KW - Nanomaterial classification KW - Regulation KW - VSSA KW - Size measurement KW - Particle size PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-391450 SN - 1388-0764 SN - 1572-896X VL - 19 IS - 2 SP - Article 61, 1 EP - 16 PB - Springer Nature AN - OPUS4-39145 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Rauscher, H. A1 - Mech, A. A1 - Gaillard, C. A1 - Stintz, M. A1 - Wohlleben, W. A1 - Weigel, St. A1 - Ghanem, A. A1 - Hodoroaba, Vasile-Dan A1 - Babick, F. A1 - Mielke, Johannes T1 - Recommendations on a revision of the EC definition of nanomaterial based on analytical possibilities; updated N2 - In October 2011 the European Commission (EC) published a "Recommendation on the definition of na-nomaterial" (2011/696/EU), to promote consistency in the interpretation of the term "nanomaterial" for legislative and policy purposes in the EU. The EC NM Definition includes a commitment to its review in the light of experience and of scientific and technological developments. This review is ongoing in 2017 and as a contribution to the review the Joint Research Centre of the European Commission (JRC) has already developed a series of three scientific-technical reports with the title: “Towards a review of the EC Recommendation for a definition of the term nanomaterial” which provides to the EC policy services sci-ence-based options on how the definition could be revised or supported with additional guidance. The overarching nature and wide scope of the EC NM Definition, as it does not exclude a priori any particulate material regardless the state, form and size, creates many analytical challenges in its imple-mentation for all stakeholders, including enterprises and regulators. The NanoDefine project has as core objective to support the implementation of the EC NM Definition. In an earlier report1 key aspects of the EC NM Definition were addressed, with the goal to improve the implementability of the EC NM Definition. Based on further developments and results obtained in NanoDefine project that first report was updated and is presented here. The key aspects are discussed based on the results of four years of research performed within the framework of the project. As a result this report assesses how well the requirements of the EC NM Definition can be fulfilled with currently available analytical possibilities. It presents recommendations and options on a revision of the EC NM Definition to improve the implementability of the definition based on currently available analytical possi-bilities, according to the state of the art in 2017. Of the technical issues considered in this report, the following seem to deserve the most attention in terms of clarification of the definition and/or provision of additional implementation guidance: 'external dimension', ‘number based particle size distribution‘, ‘polydispersity‘ and ‘upper size limit‘, the term ‘particle’, the ‘means to prove that a material is not a nanomaterial‘ and ‘the role of the volume specific sur-face area (VSSA)‘, and "particulate materials'. KW - EU definition of a nanomaterial KW - Nanoparticles KW - Revision KW - Update 2017 PY - 2017 UR - http://www.nanodefine.eu/index.php/nanodefine-publications/nanodefine-technical-reports SP - D7.10, 1 EP - D7.10, 71 PB - The NanoDefine Consortium CY - Wageningen, The Netherlands AN - OPUS4-43540 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mielke, Johannes A1 - Dohányosová, P. A1 - Müller, P. A1 - López-Vidal, S. A1 - Hodoroaba, Vasile-Dan T1 - Evaluation of electrospray as a sample preparation tool for electron microscopic investigations: Toward quantitative evaluation of nanoparticles N2 - The potential of electrospray deposition, for the controlled preparation of particles for imaging in electron microscopes, is evaluated on various materials: from mono-modal suspensions of spherical particles to multimodal suspensions and to real-world industrial materials. It is shown that agglomeration is reduced substantially on the sample carrier, compared with conventional sample preparation techniques. For the first time, it is possible to assess the number concentration of a tri-modal polystyrene suspension by electron microscopy, due to the high Deposition efficiency of the electrospray. We discovered that some suspension stabilizing surfactants form artifact particles during electrospraying. These can be avoided by optimizing the sprayed suspension. KW - Electrospary KW - Nanoparticles KW - Sample preparation KW - TEM grid KW - SEM PY - 2017 U6 - https://doi.org/10.1017/S1431927616012587 SN - 1431-9276 SN - 1435-8115 VL - 23 IS - 1 SP - 163 EP - 172 PB - Cambridge University Press AN - OPUS4-39244 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Wohlleben, W. A1 - Mielke, Johannes A1 - Hodoroaba, Vasile-Dan A1 - Zimathies, Annett A1 - Bianchin, A. A1 - Lecloux, A. A1 - Roebben, G. A1 - Rauscher, H. A1 - Gibson, N. T1 - Development of an integrated approach based on validated and standardized methods to support the implementation of the EC recommendation for a definition of nanomaterial N2 - The VSSA approach has the important advantage over classifying, imaging and counting techniques that it does not involve dispersion protocols. Further, the BET technique as the basis for VSSA determination it is in widespread use, generates low costs and is specified for many commercial materials. Finally, the same equipment allows for a deeper analysis by full isotherm evaluation. The present deliverable assesses all NanoDefine powders, supplemented by further real-world materials (in total 26 powders), and quantitatively compares the relationship between the median size (by Electron Microscopy – considered as benchmark for the EC nanomaterial definition) vs. the size derived from VSSA. The VSSA method mitigates the challenges of EM to assess the thickness of platelets, but worked as well on fibbers and particles of irregular shapes. A screening strategy is proposed. If applied to the further data from real-world materials as validation set, this screening does achieve a correct classification, leaving only borderline materials for tier 2 assessment. KW - Nanomaterial KW - Classification KW - Regulation KW - VSSA KW - Size measurement KW - Particle size PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-398938 SP - 1 EP - 26 PB - The NanoDefine Consortium CY - Wageningen, The Netherlands AN - OPUS4-39893 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sarma, Dominik A1 - Mielke, Johannes A1 - Sahre, Mario A1 - Beck, Uwe A1 - Hodoroaba, Vasile-Dan A1 - Rurack, Knut T1 - TSEM-based contour analysis as a tool for the quantification of the profile roughness of silica shells on polystyrene core particles N2 - Core-shell (CS) particles with a polymeric core and a silica shell play an important role in the materials and (bio)analytical sciences. Besides the establishment of reliable synthesis procedures, comprehensive particle characterization is essential for batch-to-batch reproducibility and objective performance assessment across architectures, protocols, and laboratories. Particle characterization with respect to size, size distribution, shell thickness and texture, surface area and roughness or materials composition is commonly conducted with different analytical methods, often on different samples. Our approach uses a dual-mode TSEM/SEM set-up with an EDX detector to obtain a complementary data set with sufficient statistical confidence of one and the same sample on a single instrument. Our protocol reveals information about size, size distribution and shell thickness of the various particles employed from overview images, while an increased field of view (FOV) and high-resolution EDX analysis yields detailed information on shell texture and elemental composition. An image analysis tool was developed to derive and quantify the profile roughness of CS particles from individual beads. Comparison with surface roughness data from AFM showed a similar trend in roughness across the series of particles. Reliable classification into smooth and rough is proposed and roughness changes within different particle batches were tracked systematically. KW - Core-shell particles KW - Electron microscopy KW - Transmission mode KW - Roughness KW - Image analysis PY - 2017 U6 - https://doi.org/10.1016/j.apsusc.2017.07.099 SN - 0169-4332 SN - 1873-5584 VL - 426 IS - 1 SP - 446 EP - 455 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-42256 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mielke, Johannes A1 - Dohányosová, P. A1 - Müller, P. A1 - Lopez, S. A1 - Hodoroaba, Vasile-Dan T1 - Electrospray as a sample preparation tool for electron microscopic investigations: Toward quantitative evaluation of nanoparticles N2 - The potential of electrospray deposition, for the controlled preparation of particles for imaging in electron microscopes, is evaluated on various materials: from mono-modal suspensions of spherical particles to multimodal suspensions and to real-world industrial materials. It is shown that agglomeration is reduced substantially on the sample carrier, compared with conventional sample preparation techniques. For the first time, it is possible to assess the number concentration of a tri-modal polystyrene suspension by electron microscopy, due to the high deposition efficiency of the electrospray. We discovered that some suspension stabilizing surfactants form artifact particles during electrospraying. These can be avoided by optimizing the sprayed suspension. KW - Electrospray deposition KW - Nanoparticles KW - SEM KW - TEM KW - Sample preparation PY - 2017 UR - https://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/electrospray-as-a-sample-preparation-tool-for-electron-microscopic-investigations-toward-quantitative-evaluation-of-nanoparticles/483B212FF290B7EC001A212A19E4E72A U6 - https://doi.org/10.1017/S1431927617010145 SN - 1435-8115 SN - 1431-9276 VL - 23 IS - S1 (July) SP - 1896 EP - 1897 PB - Cambridge University Press CY - New York, NY, U.S.A. AN - OPUS4-42453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Babick, F. A1 - Mielke, Johannes A1 - Wohlleben, W. A1 - Weigel, St. A1 - Hodoroaba, Vasile-Dan T1 - How reliably can a material be classified as a nanomaterial? Available particle-sizing techniques at work N2 - Currently established and projected regulatory frameworks require the classification of materials (whether nano or non-nano) as specified by respective definitions, most of which are based on the size of the constituent particles. This brings up the question if currently available techniques for particle size determination are capable of reliably classifying materials that potentially fall under these definitions. In this study, a wide variety of characterisation techniques, including counting, fractionating, and spectroscopic techniques, has been applied to the same set of materials under harmonised conditions. The selected materials comprised well-defined Quality control materials (spherical, monodisperse) as well as industrial materials of complex shapes and considerable polydispersity. As a result, each technique could be evaluated with respect to the determination of the number-weighted median size. Recommendations on the most appropriate and efficient use of techniques for different types of material are given. KW - Nanomaterial classification KW - Nanoparticle KW - Number-weighted median size KW - Tiered KW - Particle size analysis KW - Nanometrology KW - Characterisation techniques PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-367922 UR - http://link.springer.com/article/10.1007/s11051-016-3461-7 SN - 1388-0764 SN - 1572-896X VL - 18 IS - 6 SP - Article 158, 1 EP - 40 PB - Springer AN - OPUS4-36792 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mielke, Johannes A1 - Dohányosová, P. A1 - Lopez, S. A1 - Hodoroaba, Vasile-Dan T1 - Electrospray deposition of nanoparticles on TEM grids N2 - The authors have tested the prototype of an electrospray deposition system developed by the company RAMEM under its trademark IONER. To test the prototype and assess its performance, several materials have been sprayed onto TEM grids and the resulting particle distributions were compared to more traditional sample preparation strategies like the “drop on grid” method. Operation parameters such as the sample flow-rate, capillary – substrate distance, electric field strength and sampling period length have been optimized. It was found that the particles deposited by electrospray generally show a much more homogeneous spatial distribution on the substrate and a substantial increase of the number of single particles, which are much better suited to an automatic image evaluation procedure than the agglomerated particles observed otherwise. The applicability of the technique to a broad range of materials is demonstrated by various examples, but also the influence of the substrate, the choice of the particular TEM grid, on the obtained spatial particle distribution is assessed. KW - Electrspray deposition KW - Electron microscopy KW - Nanoparticles KW - Sample preparation PY - 2016 UR - https://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/electrospray-deposition-of-nanoparticles-on-tem-grids/459E634B7F74D474A19E15E69DA82E5D U6 - https://doi.org/10.1017/S1431927616010072 SN - 1431-9276 SN - 1435-8115 VL - 22 IS - Suppl 3 SP - 1846 EP - 1847 PB - Cambridge AN - OPUS4-38436 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -