TY - JOUR A1 - Tengattini, A A1 - Kardjilov, N A1 - Helfen, L A1 - Douissard, P A A1 - Lenoir, N A1 - Markötter, Henning A1 - Hilger, A A1 - Arlt, T A1 - Paulisch, M A1 - Turek, T A1 - Manke, Ingo T1 - Compact and versatile neutron imaging detector with sub-4μm spatial resolution based on a single-crystal thin-film scintillator N2 - A large and increasing number of scientific domains pushes for high neutron imaging resolution achieved in reasonable times. Here we present the principle, design and performance of a detector based on infinity corrected optics combined with a crystalline Gd3Ga5O12 : Eu scintillator, which provides an isotropic sub-4 μm true resolution. The exposure times are only of a few minutes per image. This is made possible also by the uniquely intense cold neutron flux available at the imaging beamline NeXT-Grenoble. These comparatively rapid acquisitions are compatible with multiple high quality tomographic acquisitions, opening new venues for in-operando testing, as briefly exemplified here. KW - Neutron imaging KW - Scintillator KW - Resolution PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-549836 VL - 30 IS - 9 SP - 14461 EP - 14477 PB - Optica CY - Washington, DC AN - OPUS4-54983 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hoffmann, H A1 - Paulisch, M C A1 - Gebhard, M A1 - Osiewacz, J A1 - Kutter, M A1 - Hilger, A A1 - Arlt, T A1 - Kardjilov, N A1 - Ellendorff, B A1 - Beckmann, F A1 - Markötter, Henning A1 - Luik, M A1 - Turek, T A1 - Manke, I A1 - Roth, C T1 - Development of a Modular Operando Cell for X-ray Imaging of Strongly Absorbing Silver-Based Gas Diffusion Electrodes N2 - Metal-based gas diffusion electrodes are utilized in chlor-alkali electrolysis or electrochemical reduction of carbon dioxide, allowing the reaction to proceed at high current densities. In contrast to planar electrodes and predominantly 2D designs, the industrially required high current densities can be achieved by intense contact between the gas and liquid phase with the catalytically active surfaces. An essential asset for the knowledge-based design of tailored electrodes is therefore in-depth information on electrolyte distribution and intrusion into the electrode’s porous structure. Lab-based and synchrotron radiography allow for monitoring this process operando. Herein, we describe the development of a cell design that can be modularly adapted and successfully used to monitor both the oxygen reduction reaction and the electrochemical reduction of CO2 as exemplary and currently very relevant examples of gas-liquid reactions by only minor modifications to the cell set-up. With the reported cell design, we were able to observe the electrolyte distribution within the gas diffusion electrode during cell operation in realistic conditions. KW - X-Ray imaging KW - Gas diffusion electrodes KW - Operando cell PY - 2022 U6 - https://doi.org/10.1149/1945-7111/ac6220 VL - 169 IS - 4 SP - 044508 PB - IOP science AN - OPUS4-55027 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, Z. A1 - Dong, K. A1 - Mazzio, K. A. A1 - Hilger, A. A1 - Markötter, Henning A1 - Wilde, F. A1 - Heinemann, T. A1 - Manke, I. A1 - Adelhelm, P. T1 - Phase transformation and microstructural evolution of CuS electrodes in solid-state batteries probed by in situ 3D X-ray tomography N2 - Copper sulfide shows some unique physico-chemical properties that make it appealing as a cathode active material (CAM) for solid-state batteries (SSBs). The most peculiar feature of the electrode reaction is the reversible formation of μm-sized Cu crystals during cycling, despite its large theoretical volume change (75%). Here, the dynamic microstructural evolution of CuS cathodes in SSBs is studied using in situ synchrotron X-ray tomography. The formation of μm-sized Cu within the CAM particles can be clearly followed. This process is accompanied by crack formation that can be prevented by increasing the stack pressure from 26 to 40 MPa. Both the Cu inclusions and cracks show a preferential orientation perpendicular to the cell stack pressure, which can be a result of a z-oriented expansion of the CAM particles during lithiation. In addition, cycling leads to a z-oriented reversible displacement of the cathode pellet, which is linked to the plating/stripping of the Li counter electrode. The pronounced structural changes cause pressure changes of up to 6 MPa within the cell, as determined by operando stack pressure measurements. Reasons for the reversibility of the electrode reaction are discussed and are attributed to the favorable combination of soft materials. KW - Copper sulfide KW - Crack evolution KW - Digital volume correlation KW - Phase transformation KW - Solid-state batteries PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-564577 IS - 2203143 SP - 1 EP - 12 PB - Wiley VHC-Verlag AN - OPUS4-56457 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sun, F. A1 - Wang, C. A1 - Osenberg, M. A1 - Dong, K. A1 - Zhang, S. A1 - Yang, C. A1 - Wang, Y. A1 - Hilger, A. A1 - Zhang, J. A1 - Dong, S. A1 - Markötter, Henning A1 - Manke, I. A1 - Cui, G. T1 - Clarifying the Electro-Chemo-Mechanical Coupling in Li10SnP2S12 based All-Solid-State Batteries N2 - A fundamental clarification of the electro-chemo-mechanical coupling at the solid–solid electrode|electrolyte interface in all-solid-state batteries (ASSBs) is of crucial significance but has proven challenging. Herein, (synchrotron) X-ray tomography, electrochemical impedance spectroscopy (EIS), time-of-flight secondary-ion mass spectrometry (TOF-SIMS), and finite element analysis (FEA) modeling are jointly used to decouple the electro-chemo-mechanical coupling in Li10SnP2S12-based ASSBs. Non-destructive (synchrotron) X-ray tomography results visually disclose unexpected mechanical deformation of the solid electrolyte and electrode as well as an unanticipated evolving behavior of the (electro)chemically generated interphase. The EIS and TOFSIMS probing results provide additional information that links the interphase/electrode properties to the overall battery performance. The modeling results complete the picture by providing the detailed distribution of the mechanical stress/strain and the potential/ionic flux within the electrolyte. Collectively, these results suggest that 1) the interfacial volume changes induced by the (electro)chemical reactions can trigger the mechanical deformation of the solid electrode and electrolyte; 2) the overall electrochemical process can accelerate the interfacial chemical reactions; 3) the reconfigured interfaces in turn influence the electric potential distribution as well as charge transportation within the SE. These fundamental discoveries that remain unreported until now significantly improve the understanding of the complicated electro-chemo-mechanical couplings in ASSBs. KW - All-solid-state batteries KW - Lithium metal batteries KW - Solid electrolytes KW - Sulfide solid electrolytes KW - Synchrotron X-ray tomography PY - 2022 U6 - https://doi.org/10.1002/aenm.202103714 SN - 1614-6832 SP - 2103714 PB - Wiley VHC-Verlag AN - OPUS4-54431 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hilger, A. A1 - Kardjilov, N. A1 - Lange, A. A1 - Kupsch, Andreas A1 - Hentschel, M. P. A1 - Manke, I. T1 - Neutron darkfield imaging of fiber composites N2 - While X-ray based darkfield imaging with grating interferometers is already widely used, darkfield imaging with neutrons has still a relatively small user community focused mostly on magnetic materials. Here, we demonstrate the application of neutron darkfield imaging byTalbot-Lau type grating interferometry to fiber reinforced plastics. Common carbon and glass fiber composites have been investigated including characteristic damage structures. The darkfield images show a strong signal response caused by fiber delamination, suitable fiber direction, particles, pores and cracks. The basic principles of neutron darkfield imaging applied to fiber composites are highlighted. KW - Neutron radiography KW - Darkfield imaging KW - Talbot-Lau interferometer KW - Fiber composites KW - Non-destructive testing PY - 2021 U6 - https://doi.org/10.1515/mt-2020-0103 SN - 2195-8572 SN - 0025-5300 VL - 63 IS - 7 SP - 623 EP - 629 PB - De Gruyter CY - Berlin AN - OPUS4-53077 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kardjilov, N A1 - Manke, I A1 - Hilger, A A1 - Arlt, T A1 - Bradbury, R A1 - Markötter, Henning A1 - Woracek, R A1 - Strobel, M A1 - Treimer, W A1 - Banhart, J T1 - The Neutron Imaging Instrument CONRAD — Post‐Operational Review N2 - The neutron imaging instrument CONRAD was operated as a part of the user program of the research reactor BER‐II at Helmholtz‐Zentrum Berlin (HZB) from 2005 to 2020. The Instrument was designed to use the neutron flux from the cold source of the reactor, transported by a curved neutron guide. The pure cold neutron spectrum provided a great advantage in the use of different neutron optical components such as focusing lenses and guides, solid‐state polarizers, Monochromators and phase gratings. The flexible setup of the instrument allowed for implementation of new methods including wavelength‐selective, dark‐field, phase‐contrast and imaging with polarized neutrons. In summary, these developments helped to attract a large number of scientists and industrial customers, who were introduced to neutron imaging and subsequently contributed to the Expansion of the neutron imaging community. KW - Neutron imaging KW - Neutron scattering KW - Neutron instrument KW - Tomography PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-534190 VL - 7 IS - 11 SP - 7010011 PB - MDPI AN - OPUS4-53419 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tang, F A1 - Wu, Z A1 - Yang, C A1 - Osenberg, M A1 - Hilger, A A1 - Dong, K A1 - Markötter, Henning A1 - Manke, I A1 - Sun, F A1 - Chen, L A1 - Cui, G T1 - Synchrotron X-ray tomography for rechargeable battery research: Fundamentals, setups and applications N2 - Understanding the complicated interplay of the continuously evolving electrode materials in their inherent 3D states during the battery operating condition is of great importance for advancing rechargeable battery research. In this regard, the synchrotron X-ray tomography technique, which enables non-destructive, multi-scale, and 3D imaging of a variety of electrode components before/during/after battery operation, becomes an essential tool to deepen this understanding. The past few years have witnessed an increasingly growing interest in applying this technique in battery research. Hence, it is time to not only summarize the already obtained battery-related Knowledge by using this technique, but also to present a fundamental elucidation of this technique to boost future studies in battery research. To this end, this review firstly introduces the fundamental principles and experimental Setups of the synchrotron X-ray tomography technique. After that, a user guide to ist application in battery research and examples of its applications in Research of various types of batteries are presented. The current review ends with a discussion of the future opportunities of this technique for next-generation rechargeable batteries research. It is expected that this review can enhance the reader’s understanding of the synchrotron X-ray tomography technique and stimulate new ideas and opportunities in battery research. KW - 3D imaging KW - Batteries KW - Synchrotron X-Ray KW - Tomography PY - 2021 U6 - https://doi.org/10.1002/smtd.202100557 VL - 5 IS - 9 SP - 2100557 PB - Wiley-VCH AN - OPUS4-53394 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Risse, S. A1 - Juhl, A. A1 - Mascotto, S. A1 - Arlt, T. A1 - Markötter, Henning A1 - Hilger, A. A1 - Manke, I. A1 - Fröba, M. T1 - Detailed and Direct Observation of Sulfur Crystal Evolution During Operando Analysis of a Li-S Cell with Synchrotron Imaging N2 - Herein, we present a detailed investigation of the electrochemically triggered formation and dissolution processes of α- and β-sulfur crystals on a monolithic carbon cathode using operando high-resolution synchrotron radiography (438 nm/pixel). The combination of visual monitoring with the electrical current response during cyclic voltammetry provides valuable insights into the sulfur formation and dissolution mechanism. Our observations show that the crystal growth process is mainly dictated by a rapid equilibrium between long-chain polysulfides on one side and solid sulfur/short-chain polysulfides on the other side, which is consistent with previous studies in this field. The high temporal and spatial resolution of synchrotron imaging enables the observation of different regimes during the sulfur formation and dissolution process. The appearance of short-chain polysulfides after the first anodic CV peak initiates a rapid dissolution process of α-sulfur crystals on the cathode. The increase in the long-chain lithium polysulfide concentration at the cathode surface during charge results in an increased crystal growth rate, which in turn produces imperfections in α- and β-sulfur crystals. There are strong indications that these defects are fluid inclusions, which may trap dissolved polysulfides and therefore reduce the electrochemical cell capacity. KW - LiS battery KW - Radiography KW - Synchrotron Imaging PY - 2020 U6 - https://doi.org/10.1021/acs.jpclett.0c01284 VL - 11 IS - 14 SP - 5674 EP - 5679 AN - OPUS4-51100 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tran, K. V. A1 - Woracek, R. A1 - Kardjilov, N. A1 - Markötter, Henning A1 - Hilger, A. A1 - Kockelmann, W. A1 - Kelleher, J. A1 - Puplampu, S. B. A1 - Penumadu, D. A1 - Tremsin, A. S. A1 - Banhart, J. A1 - Manke, I. T1 - Spectral neutron tomography N2 - Combined three-dimensional (3D) mapping of (micro-)structures with elemental and crystalline phase variations is of significant importance for the characterization of materials. Neutron wavelength selective imaging is a spectral imaging technique that exploits unique contrast differences e.g. for mapping dissimilar elemental, isotope, or phase compositions, and has the particular advantage of being applicable to sample volumes on the meso- and macroscale. While being mostly applied as radiography (2D) so far, we herein report that the extension to tomography allows for the display of the full spectral information for every voxel and in 3D. The development is supported by example data from a continuous as well as a pulsed neutron source. As a practical example, we collected 4D data sets (3D + spectral) of plastically deformed metastable stainless steel and herein demonstrate an improved quantification strategy for crystalline phase fractions. These exemplary results illustrate that localized phase transformations can be quantified even in complex geometries within centimeter-sized samples, and we will discuss the limits and future prospects of the technique that is not limited to crystalline materials. KW - 4D tomographic data KW - Multi-energy CT KW - Spectral CT KW - Phase distribution KW - Full-field phase tomography PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-521668 VL - 9 SP - 132 PB - Elsevier Ltd. AN - OPUS4-52166 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yao, J. A1 - Zhu, G. A1 - Dong, K. A1 - Osenberg, M. A1 - Hilger, A. A1 - Markötter, Henning A1 - Ju, J. A1 - Sun, F. A1 - Manke, I. A1 - Cui, G. T1 - Progress and Perspective of Controlling Li Dendrites Growth in All-Solid-State Li Metal Batteries via External Physical Fields N2 - Li dendrites penetration through solid electrolytes (SEs) challenges the development of solid-state Li batteries (SSLBs). To date, significant efforts are devoted to understand the mechanistic dynamics of Li dendrites nucleation, growth, and propagation in SEs, and various strategies that aim to alleviate and even inhibit Li dendrite formation have been proposed. Nevertheless, most of these conventional strategies require either additional material processing steps or new materials/layers that eventually increase battery cost and complexity. In contrast, using external fields, such as mechanical force, temperature physical field, electric field, pulse current, and even magnetic field to regulate Li dendrites penetration through SEs, seems to be one of the most cost-effective strategies. This review focuses on the current research progress of utilizing external physical fields in regulating Li dendrites growth in SSLBs. For this purpose, the mechanical properties of Li and SEs, as well as the experimental results that visually track Li penetration dynamics, are reviewed. Finally, the review ends with remaining open questions in future studies of Li dendrites growth and penetration in SEs. It is hoped this review can shed some light on understanding the complex Li dendrite issues in SSLBs and potentially guide their rational design for further development. KW - Li dendrites KW - Li dendrites penetration mechanisms KW - Solid electrolytes KW - Solid-state batteries PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-588331 SN - 2699-9412 SP - 1 EP - 44 PB - Wiley-VCH CY - Weinheim AN - OPUS4-58833 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -